此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Compensation/consumption hierarchical control strategy based on windsolarhydrogen coupling grid connection

(1. Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi’an University of Architecture and Technology, Xi’an 710055, China;2. Xi’an Key Laboratory of Clean Energy, Xi’an University of Architecture and Technology, Xi’an 710055;3. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;4. Shaanxi Applied Physics and Chemistry Research Institute, Xi’an 710061, China)


Abstract: In the process of gridconnected wind and solar power generation, there are problems of high rate of abandoning wind and light and insufficient energy. In order to solve these problems, we construct a gridconnected windsolar hydrogen storage (alkaline electrolyzer(AE)hydrogen storage tankbatteryproton exchange membrane fuel cell(PEMFC)) coupled system architecture. A gridconnected compensation/consumption hierarchical control strategy based on windsolar hydrogen coupling is proposed. During the gridconnected process of wind and solar power generation, the upperlevel control allocates power reasonably to the hydrogen energy storage system by dispatching the power of wind and solar power generation. At the same time, the control strategy ensures that the pressure of the hydrogen storage tank is within the safety range limit, and the lower control completes the control of the duty cycle of the converter in the system. Due to the randomness of wind and light, the hydrogen energy storage system is divided into three working conditions, namely compensation, balance and consumption, and five working modes. The simulation results show that the hydrogen energy storage system compensates for 40% of the power shortage, and consumes 27.5% of the abandoned wind and solar energy, which improves the utilization rate of clean energy.


Key words: compensation; consumption; hierarchical control strategy; windsolarhydrogen coupling; power control


References


[1]PAL P, MUKHERJEE V, KUMAR P, et al. Viability analysis of direct current (DC) standalone hybrid photovoltaic (PV)/hydrogen fuel cell (HFC) energy system: A technoeconomic approach. Materials Today: Proceedings, 2021, 39(4): 18071812.

[2]ZHAO Z, HU J, CHEN H. Bus voltage control strategy for low voltage DC microgrid based on AC power grid and battery//IEEE International Conference on Energy Internet, Apr. 1721, 2017, Beijing, China. New York: IEEE, 2017: 349354.

[3]LI J, NIU D, WU M, et al. Research on battery energy storage as backup power in the operation optimization of a regional integrated energy system. Energies, 2018, 11(11): 2990.

[4]AI AIAHMADI A A, BELKHIER Y, ULLAH N, et al. Hybrid wind/PV/battery energy managementbased intelligent noninteger control for smart DCmicrogrid of smart university. IEEE Access, 2021, 9: 9894898961.

[5]JAHANNOUSH M, NOWEH S A. Optimal designing and management of a standalone hybrid energy system using metaheuristic improved sinecosine algorithm for Recreational Center, case study for Iran country. Applied Soft Computing, 2020, 96: 106611.

[6]ZHANG Y, WEI W. Model construction and energy management system of lithium battery, PV generator, hydrogen production unit and fuel cell in islanded AC microgrid. International Journal of Hydrogen Energy, 2020, 45(33): 1638116397.

[7]HADDAD A, RAMADAN M, KHALED M, et al. Triple hybrid system coupling fuel cell with wind turbine and thermal solar system. International Journal of Hydrogen Energy, 2020, 45(20): 1148411491.

[8]ABADLIA I, ADJABI M, BOUZERIA H. Sliding mode based power control of gridconnected photovoltaichydrogen hybrid system. International Journal of Hydrogen Energy, 2017, 42(47): 2817128182.

[9]BENLAHBIB B, BOUARROUDJ N, MEKHILEF S, et al. Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid. International Journal of Hydrogen Energy, 2020, 45(53): 2911029122.

[10]YANG X Z, LI Y N, DU Y, et al. Multimode power coordination control strategy for AC/DC hybrid microgrid. High Voltage Engineering, 2021, 47(4): 12621274.

[11]KAMEL A A, REZK H, ABDELKAREEM M A. Enhancing the operation of fuel cellphotovoltaicbatterysupercapacitor renewable system through a hybrid energy management strategy. International Journal of Hydrogen Energy, 2021, 46(8): 60616075.

[12]KAFETZIS A, ZIOGOU C, PANOPOULOS K D, et al. Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renewable and Sustainable Energy Reviews, 2020, 134: 110118.

[13]YUN Y Y, DONG H Y, CHEN Z, et al. Multiobjective optimization scheduling for new energy power system considering energy storage participation. Journal of Measurement Science and Instrumentation, 2020, 11(4): 365372.

[14]KONG L, YU J, CAI G. Modeling, control and simulation of a photovoltaic/hydrogen/supercapacitor hybrid power generation system for gridconnected applications. International Journal of Hydrogen Energy, 2019, 44(46): 2512925144.

[15]CAI G W, KONG L G, PENG l, et al. Modeling and control of active PV generation system based on hydrogen storage. Acta Energiae Solaris Sinica, 2016, 37(10): 24512459.

[16]ABADLIA I, HASSAINE L, BEDDAR A, et al. Adaptive fuzzy control with an optimization by using genetic algorithms for grid connected a hybrid photovoltaichydrogen generation system. International Journal of Hydrogen Energy, 2020, 45(43): 2258922599.

[17]GU Y Q, ZHANG R P, WANG N B, et al. Peak shaving operation optimization of high proportion new energy power generation considering windsolar complementation and sourceload coupling. Journal of Measurement Science and Instrumentation, 2019, 10(4): 379388.

[18]KONG L, CAI G, XUE S, et al. Modeling and coordinated control strategy of large scale gridconnected wind/photovoltaic/energy storage hybrid energy conversion system. Mathematical Problems in Engineering, 2015: 114.

[19]KONG L, LI L, CAI G, et al. Technoeconomic analysis of hydrogen energy for renewable energy power smoothing. International Journal of Hydrogen Energy, 2021, 46(3): 28472861.

[20]XU C, KE Y, LI Y, et al. Datadriven configuration optimization of an offgrid wind/PV/hydrogen system based on modified NSGAII and CRITICTOPSIS. Energy conversion and Management, 2020, 215: 112892.


基于风光氢耦合的补偿/消纳分层控制策略


吕鑫1,2,3, 白志峰1,2,3, 车江轩1,2,3, 任冰4, 王娟1,2,3, 阮晓光1,2,3


(1. 西安建筑科技大学 陕西省纳米材料与纳米技术重点实验室, 陕西 西安 710055; 2. 西安建筑科技大学 西安市清洁能源重点实验室, 陕西 西安 710055;3.  西安建筑科技大学 机电工程学院, 陕西 西安, 710055;4. 陕西省应用物理化学研究所, 陕西 西安 710061)


摘要:针对风光发电在并网过程中存在弃风弃光率过高和功率缺额的问题, 构建了出并网型风光氢储(碱性电解槽储氢罐蓄电池质子交换膜燃料电池)耦合系统架构, 提出了基于风光氢耦合的并网型补偿/消纳分层控制策略。 实现风光发电并网过程中, 上层控制通过对风光发电功率的调度, 将功率合理分配于氢储能系统, 同时确保储氢罐压强在安全范围限值之内, 完成下层控制对系统内变换器占空比的控制。 根据风光随机性特点, 将氢储能系统划分为补偿、 平衡、 消纳三种工况, 五种工作模式。 实现风光氢耦合系统在大范围内补偿/消纳并网功率。 仿真结果表明, 氢储能系统补偿了40%的功率缺额, 消纳了27.5%的弃风弃光, 有效解决了风光发电并网过程中的功率缺额与弃风弃光问题, 提高了清洁能源利用率。


关键词:补偿; 消纳; 分层控制策略; 风光氢耦合; 功率控制


引用格式:L Xin, BAI Zhifeng, CHE Jiangxuan, et al. Compensation/consumption hierarchical control strategy based on windsolarhydrogen coupling grid connection. Journal of Measurement Science and Instrumentation, 2022, 13(1): 105114. DOI: 10.3969/j.issn.16748042.2022.01.012



[full text view]