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Abstract:
 

Aiming
 

at
 

fault
 

prediction
 

for
 

track
 

circuit
 

is
 

restricted
 

by
 

data,
 

the
 

six-terminal
 

network
 

model
 

is
 

established
 

based
 

on
 

the
 

working
 

principle
 

and
 

transmission
 

line
 

theory
 

of
 

ZPW-2000A
 

track
 

circuit
 

to
 

simulate
 

and
 

analyze
 

three
 

kinds
 

of
 

shunting
 

malfunction
 

signals.
 

A
 

combined
 

analysis
 

method
 

combining
 

variational
 

mode
 

decomposition
 

and
 

convolutional
 

neural
 

network
 

is
 

proposed.
 

The
 

energy
 

spectrum
 

feature
 

is
 

extracted
 

from
 

the
 

original
 

signal
 

by
 

variational
 

mode
 

decomposition,
 

and
 

the
 

deep
 

feature
 

is
 

extracted
 

by
 

convolution
 

neural
 

network.
 

Then,
 

the
 

sensitive
 

feature
 

for
 

fault
 

prediction
 

is
 

obtained
 

by
 

weighted
 

fusion
 

of
 

the
 

two.
 

The
 

simulation
 

experiments
 

indicate
 

that
 

the
 

proposed
 

method
 

can
 

predict
 

the
 

shunting
 

malfunction
 

accurately
 

and
 

effectively,
 

which
 

can
 

achieve
 

a
 

prediction
 

accuracy
 

of
 

99.87%
 

and
 

provide
 

a
 

new
 

idea
 

for
 

the
 

prediction
 

of
 

the
 

shunting
 

malfunction
 

for
 

track
 

circuit.
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0 Introduction
 As

 

important
 

basic
 

equipment
 

of
 

railway
 

signals,
 

track
 

circuit
 

plays
 

the
 

roles
 

of
 

train
 

occupied
 

inspection
 

and
 

transmission
 

of
 

train
 

information,
 

and
 

its
 

working
 

state
 

is
 

directly
 

related
 

to
 

the
 

transportation
 

efficiency
 

and
 

operation
 

safety.
 

Track
 

circuit
 

will
 

be
 

short-circuited
 

by
 

train
 

wheelsets
 

when
 

occupied,
 

so
 

the
 

current
 

flowing
 

through
 

the
 

receiver
 

is
 

less
 

than
 

its
 

working
 

threshold,
 

so
 

the
 

track
 

relay
 

falls
 

indicating
 

that
 

the
 

section
 

is
 

occupied
 

by
 

the
 

train.
 

However,
 

track
 

circuit
 

cannot
 

be
 

shorted
 

well
 

in
 

shunting
 

malfunction,
 

so
 

the
 

current
 

keeps
 

the
 

track
 

relay
 

on.
 

Therefore,
 

it
 

cannot
 

give
 

the
 

indication
 

of
 

the
 

section
 

being
 

occupied.
 

The
 

phenomenon
 

of
 

shunting
 

malfunction
 

may
 

threaten
 

the
 

safety
 

of
 

operation,
 

such
 

as
 

route
 

release
 

in
 

advance,
 

switch
 

in
 

transition
 

halfway
 

and
 

so
 

on.
 

According
 

to
 

statistics,
 

there
 

are
 

more
 

than
 

36
 

000
 

shunting
 

malfunction
 

sections
 

in
 

the
 

whole
 

road
 

in
 

China.
 

Among
 

all
 

kinds
 

of
 

train
 

operation
 

accidents,
 

more
 

than
 

30%
 

are
 

caused
 

by
 

shunting
 

malfunction[1].
 

 At
 

present,
 

the
 

researches
 

on
 

shunting
 

malfunction
 

mainly
 

focus
 

on
 

the
 

formation
 

mechanism.
 

With
 

the
 

development
 

of
 

computer
 

technology,
 

many
 

intelligent
 

methods
 

have
 

been
 

applied
 

to
 

the
 

fault
 

prediction
 

for
 

track
 

circuit.
 

The
 

research
 

on
 

the
 

fault
 

prediction
 

usually
 

requires
 

a
 

lot
 

of
 

data,
 

and
 

the
 

existing
 

studies
 

have
 

shown
 

that
 

the
 

data
 

simulated
 

by
 

track
 

circuit
 

model
 

can
 

replace
 

the
 

field
 

data[2-6].
 

Wang[2]
 

adopted
 

the
 

fuzzy
 

entropy
 

theory
 

and
 

the
 

principle
 

of
 

asymmetric
 

closeness
 

to
 

establish
 

an
 

early
 

warning
 

system
 

of
 

shunting
 

malfunction,
 

which
 

made
 

the
 

early
 

warning
 

more
 

accurate.
 

Feng[3]
 

proposed
 

a
 

shunt
 

resistance
 

estimation
 

method
 

based
 

on
 

the
 

received
 

voltage
 

amplitude
 

of
 

locomotive
 

signal
 

at
 

the
 

transmitter,
 

which
 

provided
 

a
 

new
 

method
 

for
 

the
 

prediction
 

of
 

shunting
 

malfunction.
 

Zhang[4]
  

extracted
 

the
 

feature
 

based
 

on
 

wavelet
 

analysis,
 

and
 

the
 

prediction
 

model
 

of
 

PSO-SVM
 

was
 

used
 

to
 

realize
 

the
 

prediction
 

of
 

shunting
 

malfunction.
 

However,
 

the
 

prediction
 

model
 

takes
 

a
 

longer
 

time
 

due
 

to
 

the
 

large
 

amount
 

of
 

calculation
 

when
 

the
 

experimental
 

samples
 

are
 

too
 

large.
 

 A
 

six-terminal
 

network
 

model
 

is
 

established
 

by
 

analyzing
 

the
 

working
 

principle
 

and
 

transmission
 

characteristics
 

of
 

track
 

circuit
 

to
 

simulate
 

the
 

shunting
 

current
 

signal
 

caused
 

by
 

shunting
 

malfunction.
 

In
 

order
 

to
 

improve
 

the
 

accuracy
 

and
 

①
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stability
 

of
 

prediction,
 

the
 

variational
 

mode
 

decomposition
 

applied
 

in
 

signal
 

processing
 

is
 

combined
 

with
 

the
 

deep
 

learning
 

of
 

artificial
 

intelligence
 

algorithm.
 

The
 

feasibility
 

of
 

this
 

method
 

is
 

verified
 

by
 

the
 

training
 

set
 

data
 

and
 

the
 

test
 

set
 

data.
 

And
 

compared
 

with
 

others,
 

the
 

combined
 

analysis
 

method
 

improves
 

the
 

accuracy
 

and
 

stability
 

of
 

prediction.

1 Six-terminal
 

network
 

model
 

of
 

shunting
 

state
 

for
 

track
 

circuit

1.1 Six-terminal
 

network
 

model
 In

 

the
 

actual
 

train
 

operation,
 

the
 

frequency
 

shift
 

signal
 

generated
 

by
 

the
 

transmitter
 

has
 

leakage
 

to
 

the
 

ground
 

in
 

the
 

transmission
 

process
 

of
 

the
 

rail
 

lines,
 

so
 

the
 

rail
 

lines
 

can
 

be
 

considered
 

as
 

a
 

three-

conductor
 

transmission
 

line[7].
 

The
 

six-terminal
 

network
 

model
 

is
 

established
 

for
 

the
 

parts
 

greatly
 

affected
 

by
 

the
 

ground,
 

e.g.,
 

the
 

main
 

track
 

circuit
 

and
 

syntonic
 

sections,
 

and
 

the
 

four-terminal
 

network
 

model
 

is
 

established
 

for
 

the
 

parts
 

with
 

better
 

ground
 

insulation
 

protection
 

in
 

the
 

transmission
 

channel
 

and
 

the
 

receiving
 

channel.
 

By
 

simulating
 

the
 

process
 

of
 

the
 

train
 

body
 

entering
 

track
 

circuit,
 

it
 

is
 

found
 

that
 

the
 

shunt
 

resistances
 

of
 

the
 

wheelset
 

are
 

approximately
 

the
 

same
 

when
 

the
 

train
 

wheelset
 

is
 

considered
 

as
 

single
 

wheelset
 

and
 

multiple
 

wheelsets
 

respectively
 

entering
 

the
 

same
 

track
 

circuit
 

section[8-9].
 

Therefore,
 

to
 

simplify
 

the
 

model,
 

single
 

wheelset
 

is
 

used
 

to
 

equivalent
 

the
 

situation
 

that
 

track
 

circuit
 

has
 

been
 

occupied.
 

The
 

shunting
 

state
 

of
 

ZPW-2000A
 

track
 

circuit
 

is
 

modelled,
 

as
 

shown
 

in
 

Fig.1.

Fig.1 Six-terminal
 

network
 

model
 

of
 

shunting
 

state
 

for
 

track
 

circuit

 In
 

Fig.1,ZjBA2 is
 

the
 

equivalent
 

impedance
 

of
 

the
 

syntonic
 

unit
 

BA1;
 

Zjs is
 

the
 

apparent
 

impedance
 

between
 

the
 

receiver
 

syntonic
 

unit
 

BA1
 

and
 

the
 

receiver;
 

Rf
 is

 

the
 

shunt
 

resistance
 

of
 

the
 

first
 

wheelset
 

of
 

the
 

train;
 

Zxg
 is

 

the
 

apparent
 

impedance
 

from
 

the
 

transmitter
 

syntonic
 

unit
 

BA2
 

to
 

the
 

receiver
 

of
 

small
 

track.
 

According
 

to
 

Thevenin’s
 

theorem,
 

the
 

circuit
 

between
 

the
 

transmitter
 

syntonic
 

unit
 

BA1
 

and
 

the
 

transmitter
 

can
 

be
 

equivalent
 

to
 

a
 

series
 

connection
 

of
 

a
 

voltage
 

source
 

Uef
  and

 

an
 

impedance
 

Zef.
 According

 

to
 

the
 

transmission
 

line
 

theory,
 

the
 

transmission
 

matrix
 

equation
 

of
 

the
 

six-terminal
 

network
 

model
 

can
 

be
 

obtained
 

as

U11

U21

I11
I21

􀭠
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􀪁
􀪁
􀪁􀪁

􀭤
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􀪁
􀪁
􀪁􀪁
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􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

,

(1)

where
 

U11
 and

 

U21
 are

 

the
 

ground
 

voltages
 

of
 

rails
 

at
 

both
 

ends
 

of
 

Uef
 and

 

Zef,
 

respectively;
 

I11 and
 

I21 are
 

the
 

current
 

of
 

rail
 

at
 

both
 

ends
 

of
 

Uef
 and

 

Zef,
 

respectively;
 

U16
 and

 

U26
 are

 

the
 

ground
 

voltage
 

of
 

rails
 

at
 

both
 

ends
 

of
 

ZjBA2;
 

I16 and
 

I26 are
 

the
 

current
 

of
 

rails
 

at
 

both
 

ends
 

of
 

ZjBA2;
 

Nzgl
(x)(l=1,2)

 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

of
 

the
 

main
 

track
 

circuit
 

with
 

length
 

x;NR (Rf)
 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

of
 

Rf;
 

Njs (Zjs )
 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

of
 

Zjs;
 

Njtx(x)
 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

from
 

Zjs to
 

ZjBA2.
 For

 

the
 

transmitter
 

syntonic
 

section,
 

Kirchhoff’s
 

law
 

shows
 

that

U'
11

U'
22

I'
11

I'
22

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤
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, (2)
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0 0 1 1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
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􀪁
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12

U'
22

I'
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=02×1,(3)

where
 

U'
11

 and
 

U'
21

 are
 

the
 

ground
 

voltages
 

of
 

rails
 

at
 

both
 

ends
 

of
 

Uef
 and

 

Zef,
 

respectively;
 

I'
11and

 

I'
21

 are
 

the
 

current
 

of
 

rail
 

at
 

both
 

ends
 

of
 

Uef
 and

 

Zef
 ,

 

respectively;
 

U'
12

 and
 

U'
22

 are
 

the
 

ground
 

voltage
 

of
 

rails
 

at
 

both
 

ends
 

of
 

ZjBA2;
 

I'
12

 and
 

I'
22

 are
 

the
 

current
 

of
 

rails
 

at
 

both
 

ends
 

of
 

ZjBA2;
 

Nftx(x)
 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

from
 

Uef
 to

 

ZjBA2.
 For

 

the
 

transmitter
 

syntonicunit,
 

Kirchhoff’s
 

law
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shows
 

that

1 -1 -ZjBA2/2 ZjBA2/2
0 0 1 1
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(4)

 The
 

voltage
 

and
 

current
 

on
 

both
 

sides
 

of
 

the
 

transmitter
 

satisfy
 

the
 

relationship
 

of
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􀭤
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􀪁
􀪁
􀪁
􀪁
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0
0
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􀪁
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􀪁􀪁

.(5)

 The
 

transmission
 

equation
 

between
 

the
 

transmitter
 

and
 

the
 

shunt
 

resistance
 

can
 

be
 

expressed
 

as

U11

U21

I11
I21

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁
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􀪁􀪁

􀭤

􀭥
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􀪁
􀪁
􀪁􀪁

, (6)

where
 

Nzg1 (x )
 

represents
 

the
 

transmission
 

characteristic
 

matrix
 

from
 

Uef
 to

 

Rf.
 U11

 and
 

U22
 can

 

be
 

obtained
 

from
 

simultaneous
 

Eq.(1)
 

to
 

Eq.(6),
 

so
 

the
 

shunting
 

current
 

Ic is

Ic=(U12-U22)/Rf. (7)

 Ic can
 

reflect
 

the
 

shunting
 

condition
 

of
 

rail
 

lines,
 

so
 

it
 

plays
 

an
 

important
 

role
 

in
 

the
 

prediction
 

of
 

shunting
 

malfunction.
 

The
 

shunting
 

current
 

signal
 

is
 

electromagnetically
 

induced
 

with
 

the
 

receiving
 

coil
 

of
 

the
 

locomotive
 

signal,
 

which
 

is
 

converted
 

into
 

the
 

locomotive
 

induced
 

voltage
 

signal
 

to
 

generate
 

the
 

train
 

control
 

information.
 

There
 

is
 

only
 

difference
 

in
 

amplitude
 

coefficient
 

between
 

shunting
 

current
 

signal
 

and
 

locomotive
 

induced
 

voltage
 

signal,
 

so
 

the
 

detection
 

of
 

locomotive
 

induced
 

voltage
 

signal
 

is
 

transformed
 

into
 

shunting
 

current
 

detection.

1.2 Influence
 

of
 

shunting
 

malfunction
 The

 

model
 

is
 

simulated
 

based
 

on
 

the
 

line
 

data
 

of
 

a
 

certain
 

electricity
 

section.
 

The
 

length
 

of
 

the
 

main
 

track
 

circuit
 

is
 

1
 

176
 

m
 

and
 

the
 

carrier
 

signal
 

is
 

1
 

700
 

Hz.
 

Fig.2
 

shows
 

the
 

envelope
 

curve
 

of
 

shunting
 

current
 

obtained
 

by
 

simulation,
 

which
 

is
 

compared
 

with
 

the
 

actual
 

induced
 

voltage
 

envelope
 

curve
 

after
 

normalization
 

to
 

verify
 

the
 

correctness
 

of
 

the
 

six-terminal
 

network
 

model.
 

The
 

leakage
 

to
 

the
 

ground
 

is
 

considered
 

by
 

the
 

six-terminal
 

network
 

model
 

of
 

track
 

circuit
 

established,
 

so
 

the
 

obtained
 

envelope
 

curve
 

of
 

shunting
 

current
 

is
 

more
 

consistent
 

with
 

the
 

actual
 

data,
 

which
 

improves
 

the
 

accuracy
 

of
 

equivalent
 

model.
 

There
 

are
 

many
 

reasons
 

for
 

shunting
 

malfunction.
 

It
 

is
 

thought
 

that
 

the
 

shunt
 

resistance
 

increases,
 

which
 

causes
 

the
 

track
 

circuit
 

not
 

to
 

short
 

well.

Fig.2 Three
 

signal
 

amplitude
 

normalization
 

comparison

 This
 

paper
 

mainly
 

studies
 

the
 

instantaneous
 

shunting
 

malfunction
 

or
 

local
 

shunting
 

malfunction
 

caused
 

by
 

the
 

train
 

passing
 

through
 

the
 

neutral
 

zone,
 

braking
 

sand
 

or
 

the
 

wet
 

section.
 

Fig.3
 

shows
 

the
 

shunting
 

malfunction
 

of
 

track
 

circuit
 

at
 

300
 

m-470
 

m.
 

The
 

curve
 

of
 

solid
 

line
 

represents
 

the
 

normal
 

shunting,
 

and
 

the
 

other
 

three
 

curves
 

represent
 

the
 

situations
 

that
 

shunting
 

malfunction
 

are
 

gradually
 

serious.

Fig.3 Part
 

of
 

shunting
 

malfunction
 

of
 

track
 

circuit

 It
 

can
 

be
 

seen
 

from
 

Fig.3
 

that
 

due
 

to
 

rail
 

impedance,
 

ballast
 

resistance
 

and
 

other
 

reasons,
 

the
 

signal
 

is
 

attenuated
 

in
 

the
 

transmission
 

process,
 

so
 

the
 

amplitude
 

envelope
 

curve
 

of
 

shunting
 

current
 

shows
 

attenuation
 

trend.
 

Due
 

to
 

compensation
 

capacitance,
 

the
 

transmission
 

channel
 

tends
 

to
 

be
 

resistive,
 

and
 

the
 

attenuation
 

of
 

signal
 

is
 

slowed
 

down,
 

ensuring
 

the
 

transmission
 

distance.
 

If
 

there
 

is
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a
 

bad
 

shunting
 

between
 

370
 

m-400
 

m,
 

the
 

signal
 

amplitude
 

of
 

the
 

fault
 

part
 

is
 

obviously
 

lower
 

than
 

the
 

normal
 

signal
 

amplitude.
 

And
 

with
 

the
 

increase
 

of
 

shunt
 

resistance,
 

the
 

signal
 

amplitude
 

is
 

lower,
 

which
 

indicates
 

that
 

the
 

impact
 

of
 

shunting
 

malfunction
 

is
 

more
 

and
 

more
 

serious.
 

However,
 

the
 

overall
 

change
 

trend
 

of
 

amplitude
 

envelope
 

curve
 

of
 

current
 

is
 

consistent
 

with
 

that
 

of
 

track
 

circuit
 

in
 

normal
 

condition.

2 Prediction
 

of
 

shunting
 

malfunction
 

of
 

track
 

circuit
 

based
 

on
 

combined
 

analysis
2.1 Combined

 

analysis
 

method
 When

 

the
 

train
 

moves
 

into
 

a
 

certain
 

section,
 

the
 

shunting
 

current
 

signal
 

will
 

be
 

generated.
 

Considering
 

that
 

the
 

envelope
 

signal
 

of
 

track
 

circuit
 

is
 

non-linear
 

and
 

non-stationary,
 

a
 

combination
 

of
 

variational
 

mode
 

decomposition
 

(VMD)
 

and
 

deep
 

learning
 

composed
 

of
 

cascade
 

block
 

convolutional
 

neural
 

network
 

(CB-CNN)
 

is
 

proposed
 

to
 

predict
 

the
 

shunting
 

malfunction
 

for
 

track
 

circuit,
 

as
 

shown
 

in
 

Fig.4.

Fig.4 Framework
 

of
 

combined
 

analysis
 

method

 One
 

branch
 

is
 

composed
 

of
 

VMD
 

which
 

is
 

mainly
 

used
 

to
 

decompose
 

the
 

original
 

signal
 

and
 

extract
 

the
 

energy
 

spectrum
 

feature.
 

The
 

other
 

is
 

CB-CNN,
 

which
 

extracts
 

the
 

features
 

through
 

a
 

series
 

of
 

operations
 

such
 

as
 

convolution,
 

pooling
 

and
 

so
 

on
 

by
 

constructing
 

filters
 

with
 

different
 

features
 

of
 

the
 

input
 

data.
 

Then
 

the
 

SCE
 

fusion
 

module
 

fuses
 

the
 

features
 

extracted
 

from
 

the
 

two
 

branches
 

to
 

get
 

the
 

sensitive
 

feature
 

p.
 

Finally,
 

the
 

normal
 

signal
 

and
 

fault
 

signal
 

are
 

classified
 

by
 

the
 

back-end
 

classifier
 

to
 

predict
 

whether
 

the
 

track
 

circuit
 

has
 

bad
 

shunting.
 The

 

reason
 

is
 

that
 

the
 

two
 

branches
 

have
 

complementary
 

information.
 

The
 

left
 

can
 

reflect
 

the
 

frequency
 

domain
 

characteristics
 

of
 

signal,
 

and
 

the
 

right
 

can
 

extract
 

the
 

abstract
 

feature
 

of
 

the
 

original
 

signal
 

by
 

the
 

multi-layer
 

mapping
 

of
 

CB-CNN.
 

The
 

feature
 

extracted
 

by
 

deep
 

learning
 

do
 

not
 

have
 

clear
 

physical
 

meaning,
 

and
 

it
 

is
 

difficult
 

to
 

be
 

analyzed.
 

Whereas
 

the
 

feature
 

extracted
 

by
 

signal
 

processing
 

has
 

clear
 

physical
 

meaning.
 

However
 

the
 

extraction
 

of
 

feature
 

quantity
 

is
 

artificially
 

selected,
 

and
 

the
 

selection
 

of
 

different
 

feature
 

quantity
 

will
 

also
 

affect
 

the
 

accuracy
 

of
 

prediction.
 

In
 

order
 

to
 

learn
 

from
 

each
 

other,
 

the
 

two
 

features
 

are
 

fused.

2.2 VMD
 Non-recursive

 

VMD
 

is
 

used
 

to
 

decompose
 

the
 

original
 

signal
 

into
 

K
 

eigenmode
 

functions
 

uk(t).
 

The
 

uk (t)
 

can
 

be
 

regarded
 

as
 

a
 

frequency
 

and
 

amplitude
 

modulation
 

signal,
 

so
 

the
 

original
 

signal
 

can
 

be
 

expressed
 

as

f(t)=∑
k
uk(t)=∑

k
Ak(t)cos(φk(t)), (8)

where
 

Ak (t)
 

and
 

φk (t)
 

are
 

the
 

instantaneous
 

amplitude
 

and
 

phase
 

of
 

uk (t),
 

respectively.
 

Therefore,
 

the
 

VMD
 

algorithm
 

can
 

be
 

regarded
 

as
 

the
 

original
 

signal
 

decomposed
 

into
 

K
 

mode
 

functions
 

uk(t),
 

and
 

each
 

component
 

is
 

iterated
 

synchronously
 

to
 

minimize
 

the
 

sum
 

of
 

the
 

estimated
 

bandwidth
 

of
 

each
 

component.
 

The
 

VMD
 

algorithm
 

consists
 

of
 

the
 

3
 

parts.
 1)

 

Construction
 

of
 

variational
 

problem
 ①

 

The
 

single
 

side
 

spectrum
 

of
 

uk(t)
 

is
 

obtained
 

by
 

Hilbert
 

transform
 

for
 

each
 

uk(t),
 

and
 

the
 

estimated
 

center
 

frequency
 

ωk
 is

 

mixed
 

with
 

each
 

component
 

to
 

modulate
 

each
 

component
 

to
 

the
 

baseband
 

in
 

frequency
 

shift.

δ(t)+jπt  *uk(t)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 e-jωkt, (9)

where
 

δ (t)
 

is
 

the
 

impulse
 

function;
 

*
 

is
 

a
 

convolution
 

operator.
 ②

 

By
 

calculating
 

the
 

square
 

estimation
 

bandwidth
 

of
 

L2
 

norm
 

of
 

each
 

component,
 

the
 

constrained
 

variational
 

model
 

is
 

obtained.
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min
{uk},{ωk}

∑
k
∂t σ(t)+jπt  *uk(t)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 e-jωt
2

2  ,
s.t.∑

k
uk(t)=f(t),

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

(10)

where
 

∂t
 

is
 

the
 

gradient
 

operation;
 

{uk (t)}=
{u1(t),u2(t),…,uK(t)}

 

is
 

the
 

component;
 

{ωk}=
{ω1,ω2,…,ωK}is

 

the
 

central
 

frequency;
 

‖‖2 

indicates
 

L2-norms.
 2)

 

Solution
 

of
 

variational
 

problem
 By

 

introducing
 

the
 

quadratic
 

penalty
 

factor
 

α
 

and
 

Lagrange
 

multiplier
 

λ(t),
 

the
 

constrained
 

variational
 

problem
 

of
 

Eq.(10)
 

can
 

be
 

transformed
 

into
 

unconstrained
 

variational
 

problem,
 

shown
 

as
 

L({uk(t)},{ωk},λ)=

α∑
k
∂t σ(t)+jπt  *uk(t)􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 e-jωkt
2

2
+

f(t)-∑
k
uk(t)

2

2+<λ(t),f(t)-∑
k
uk(t)>.

(11)

 The
 

three
 

parameters
 

uk(t),
 

ωk
 and

 

λ(t)
 

are
 

updated
 

by
 

alternating
 

direction
 

multiplier
 

method.
 

When
 

the
 

condition
 

of
 

Eq.(12)
 

is
 

satisfied,
 

the
 

final
 

solution
 

of
 

Eq.(11)
 

can
 

be
 

obtained.

∑
k

ûn+1
k (ω)-̂un

k(ω)2
2  

ûn
k(ω)

<ε, (12)

where
 

ûn
k(ω)

 

is
 

the
 

Fourier
 

transform
 

of
 

un
k(t),

 

and
 

the
 

convergence
 

error
 

ε>0.
 3)

 

Extraction
 

of
 

feature
 

 The
 

signal
 

decomposed
 

by
 

VMD
 

can
 

reflect
 

the
 

distribution
 

characteristics
 

in
 

different
 

frequency
 

bands[10],
 

whereas
 

the
 

energy
 

of
 

fault
 

signal
 

in
 

different
 

frequency
 

bands
 

fluctuates
 

greatly,
 

so
 

the
 

energy
 

spectrum
 

feature
 

of
 

signal
 

is
 

used
 

as
 

the
 

input
 

of
 

fault
 

prediction.
 

The
 

energy
 

value
 

of
 

each
 

frequency
 

band
 

can
 

be
 

expressed
 

as

E(ui)=(ui)2, (13)

where
 

ui
 represents

 

the
 

i-th
 

component.
 Therefore,

 

the
 

energy
 

spectrum
 

feature
 

of
 

the
 

signal
 

can
 

be
 

expressed
 

as

m=
E(u1)

∑
k

i=1
E(ui)

,
 E(u2)

∑
k

i=1
E(ui)

,…,E(uk)

∑
k

i=1
E(ui)

􀭠

􀭡
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 =m1,m2,…,mk  1×k. (14)

2.3 CB-CNN
 The

 

structure
 

of
 

CB-CNN
 

is
 

shown
 

in
 

Fig.5.
 

The
 

original
 

signal
 

is
 

convoluted
 

through
 

the
 

convolution
 

layer,
 

then
 

through
 

the
 

regularization
 

layer,
 

activation
 

layer
 

and
 

maximum
 

pooling
 

layer,
 

and
 

finally
 

into
 

the
 

subsequent
 

cascade
 

block.

Fig.5 Structure
 

of
 

CB-CNN

 The
 

cascade
 

block
 

has
 

eight
 

layers
 

of
 

operation,
 

including
 

three
 

layers
 

of
 

convolution
 

calculation,
 

two
 

layers
 

of
 

activation,
 

one
 

layer
 

of
 

upsampling,
 

one
 

layer
 

of
 

concatenate
 

calculation
 

and
 

one
 

layer
 

of
 

batch
 

normalization.
 

The
 

detailed
 

structure
 

is
 

shown
 

in
 

Fig.6.
 

Fig.6 Structure
 

of
 

cascade
 

block

 Since
 

the
 

non-stationary
 

signal
 

has
 

a
 

strong
 

time
 

correlation,
 

this
 

characteristic
 

will
 

gradually
 

weaken
 

as
 

the
 

depth
 

of
 

the
 

cascade
 

deepens.
 

There
 

are
 

two
 

bridging
 

branches
 

in
 

the
 

cascade
 

block
 

to
 

preserve
 

the
 

temporal
 

correlation
 

of
 

shallow
 

features.

2.4 SCE
 

module
 The

 

SCE
 

module
 

consists
 

of
 

four
 

steps:
 

squeeze,
 

connect,
 

excitation
 

and
 

reweight.
 1)

 

Squeeze.
 

The
 

feature
 

matrix
 

X =
x11 … x1b
︙ ︙ ︙
xa1 … xab

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

a×b
 

extracted
 

by
 

CB-CNN
 

is
 

squeezed
 

by
 

the
 

global
 

average
 

pooling
 

method
 

to
 

obtain
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feature
 

n.

nj=Fsq(X)=
1
L∑

L

i=1
xij,j=1,2,…,b, (15)

n=(n1,n2,…,nb). (16)

 2)
 

Connect.
 

The
 

squeezed
 

feature
 

n
 

is
 

connected
 

with
 

the
 

feature
 

m
 

extracted
 

by
 

VMD
 

to
 

obtain
 

the
 

fusion
 

feature
 

q.

q=Fco(m,n)=(m1,…,mk,n1,…,nb,)=
(q1,…,qc), (17)

and
 

c=k+b.
 3)

 

Excitation.
 

The
 

weight
 

w
 

of
 

feature
 

q
 

is
 

estimated
 

by
 

feature
 

dimension
 

reduction.

w=Fex(q,W)=σ(g(q,W))=σ(W2δ(W1q)),
 

(18)

where
 

W1
 and

 

W2
 are

 

the
 

mapping
 

matrices
 

obtained
 

by
 

learning;
 

σ
 

and
 

δ
 

are
 

the
 

mapping
 

functions.
 4)

 

Reweight.
 

The
 

feature
 

q
 

is
 

weighted
 

to
 

obtain
 

the
 

sensitive
 

feature
 

p
 

for
 

prediction.

p=Fscale(q,w)=wq. (19)

3 Simulation
 

and
 

discussion
3.1 Data

 

source
 In

 

order
 

to
 

verify
 

the
 

feasibility
 

and
 

effectiveness
 

of
 

the
 

proposed
 

method
 

in
 

shunting
 

malfunction
 

prediction,
 

the
 

model
 

established
 

in
 

1.1
 

is
 

adopted
 

to
 

simulate
 

the
 

shunting
 

current
 

under
 

normal
 

conditions
 

and
 

faults,
 

and
 

White
 

Gaussian
 

Noise
 

is
 

introduced
 

to
 

replace
 

the
 

environmental
 

disturbance
 

of
 

the
 

train.
 

The
 

four
 

kinds
 

of
 

signals
 

in
 

Fig.3
 

are
 

simulated
 

by
 

setting
 

different
 

line
 

parameters
 

of
 

track
 

circuit,
 

each
 

type
 

of
 

signal
 

has
 

2
 

500
 

sets,
 

with
 

a
 

total
 

of
 

10
 

000
 

sets
 

of
 

data.
 

Among
 

them,
 

7
 

000
 

sets
 

are
 

training
 

set
 

samples,
 

and
 

3
 

000
 

sets
 

are
 

test
 

set
 

samples.

3.2 Selection
 

of
 

parameters
 1)

 

Selection
 

of
 

mode
 

decomposition
 

number
 

K
 

 Since
 

the
 

classification
 

accuracy
 

of
 

the
 

prediction
 

model
 

will
 

be
 

affected
 

by
 

the
 

number
 

of
 

mode
 

decomposition
 

in
 

VMD
 

algorithm,
 

the
 

appropriate
 

number
 

of
 

K
 

is
 

selected
 

first.
 

As
 

shown
 

in
 

Fig.7,
 

the
 

classification
 

accuracy
 

curve
 

is
 

obtained
 

by
 

using
 

different
 

mode
 

decomposition
 

numbers
 

and
 

training
 

times
 

on
 

the
 

training
 

set.
 

When
 

the
 

decomposition
 

number
 

K=4,
 

the
 

classification
 

accuracy
 

is
 

relatively
 

stable
 

compared
 

with
 

other
 

decomposition
 

numbers.
 

The
 

performance
 

of
 

each
 

mode
 

decomposition
 

number
 

in
 

the
 

training
 

set
 

and
 

test
 

set
 

is
 

shown
 

in
 

Table
 

1.

Fig.7 Influence
 

of
 

different
 

K
 

on
 

prediction
 

model

Table
 

1 Classification
 

accuracy
 

of
 

different
 

K

K Training
 

set
 

accuracy/% Test
 

set
 

accuracy/%

3 99.55 97.00
4 100.00 99.85
6 99.80 98.75
8 99.65 98.55
9 100.00 99.20

 When
 

the
 

decomposition
 

numbers
 

are
 

3,
 

4,
 

6,
 

8
 

and
 

9,
 

respectively,
 

the
 

classification
 

accuracy
 

of
 

the
 

prediction
 

model
 

in
 

the
 

training
 

set
 

is
 

not
 

different.
 

However,
 

when
 

the
 

decomposition
 

number
 

K=4,
 

the
 

prediction
 

model
 

shows
 

better
 

performance
 

in
 

both
 

the
 

training
 

set
 

and
 

the
 

test
 

set,
 

and
 

has
 

good
 

generalization
 

ability.
 

 Therefore,
 

the
 

mode
 

decomposition
 

number
 

K
 

of
 

the
 

signal
 

is
 

selected
 

as
 

4.
 2)

 

Selection
 

of
 

convolution
 

kernel
 

for
 

each
 

module
 The

 

parameters
 

selection
 

of
 

CB-CNN,
 

SCE
 

fusion
 

module
 

and
 

classifierare
 

shown
 

in
 

Table
 

2.
Table

 

2 Selection
 

of
 

parameters
 

for
 

each
 

module

Module Layer Convolution
 

kernel

CB-CNN
Convolution 64

First
 

cascade
 

block [32,64]
Second

 

cascade
 

block [128,256]

SCE
First

 

fully
 

connected 17
Second

  

fully
 

connected 272

Classifier
First

 

fully
 

connected 100
Second

 

fully
 

connected 4

3.3 Simulation
 1)

 

Signal
 

decomposition
 Fig.8

 

shows
 

the
 

decomposition
 

and
 

comparison
 

diagram
 

of
 

VMD
 

for
 

normal
 

shunting
 

(Rf=0.15
 

Ω)
 

and
 

fault
 

(Rf=0.5
 

Ω).
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(a)
 

Rf=0.15
 

Ω

(b)
 

Rf=0.5
 

Ω
Fig.8 VMD

 

comparison
 

diagram

 When
 

the
 

track
 

circuit
 

is
 

normal,
 

the
 

decomposed
 

signals
 

show
 

regular
 

fluctuations
 

without
 

abrupt
 

signals.
 

Whereas
 

the
 

track
 

circuit
 

has
 

shunting
 

malfunction,
 

the
 

fluctuation
 

of
 

some
 

sections
 

with
 

bad
 

shunting
 

is
 

significantly
 

greater
 

than
 

that
 

caused
 

by
 

noise.
 

In
 

addition,
 

VMD
 

can
 

remove
 

the
 

attenuation
 

trend
 

of
 

normal
 

signal
 

and
 

smooth
 

the
 

signal
 

to
 

notice
 

the
 

fluctuation
 

of
 

the
 

fault.
 

Thus,
 

VMD
 

algorithm
 

is
 

effective
 

for
 

predicting
 

shunting
 

malfunction.
 2)

 

Network
 

training
 Fig.9

 

shows
 

the
 

relationship
 

between
 

the
 

number
 

of
 

iterations
 

and
 

the
 

prediction
 

accuracy.
 

The
 

network
 

learning
 

rate
 

is
 

set
 

as
 

0.01,
 

and
 

the
 

parameter
 

fine-tuning
 

is
 

0.005[11].
 

Fig.9 Relationship
 

between
 

iterations
 

and
 

accuracy

 After
 

several
 

iterations,
 

the
 

highest
 

prediction
 

accuracy
 

reaches
 

100%
 

and
 

tends
 

to
 

be
 

stable
 

after
 

the
 

eighth
 

iteration,
 

indicating
 

that
 

the
 

combined
 

analysis
 

method
 

of
 

VMD
 

and
 

CB-CNN
 

can
 

effectively
 

predict
 

the
 

phenomenon
 

of
 

shunting
 

malfunction
 

for
 

track
 

circuit.

3.4 Discussion
 In

 

order
 

to
 

verify
 

the
 

superiority
 

of
 

the
 

algorithm,
 

the
 

models
 

of
 

Refs.[4]
 

and
 

[14]
 

are
 

used
 

to
 

classify
 

the
 

data
 

to
 

predict
 

the
 

fault,
 

and
 

the
 

average
 

classification
 

accuracy
 

is
 

shown
 

in
 

Table
 

3.
Table

 

3 Comparison
 

results
 

of
 

combined
 

method
 

with
 

other
 

methods
Method Accuracy/%

GWO-SVM 94.82
PSO-SVM 99.5

Combined
 

analysis 99.87

 It
 

can
 

be
 

found
 

that
 

the
 

combined
 

analysis
 

method
 

is
 

superior
 

to
 

other
 

methods
 

in
 

classification
 

accuracy,
 

and
 

its
 

classification
 

accuracy
 

can
 

reach
 

more
 

than
 

99.8%.
 

Fig.10
 

shows
 

the
 

prediction
 

result
 

of
 

shunting
 

malfunction
 

using
 

the
 

combined
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analysis
 

method.
 

 The
 

classification
 

label
 

of
 

normal
 

shunting
 

is
 

1,
 

and
 

the
 

other
 

classification
 

labels
 

are
 

bad
 

shunting.
 

The
 

simulation
 

experiments
 

show
 

that
 

there
 

are
 

2
 

groups,
 

1
 

group
 

and
 

1
 

group
 

of
 

samples
 

misclassified
 

respectively
 

when
 

the
 

classification
 

label
 

are
 

2,
 

3
 

and
 

4
 

in
 

3
 

000
 

test
 

set
 

samples,
 

and
 

the
 

classification
 

accuracy
 

is
 

99.87%.

Fig.10 Prediction
 

results
 

of
 

shunting
 

malfunction

4 Conclusions
 In

 

view
 

of
 

the
 

shunting
 

malfunction
 

of
 

track
 

circuit,
 

variational
 

mode
 

decomposition
 

is
 

combined
 

with
 

convolution
 

neural
 

network.
 

The
 

normal
 

shunting
 

current
 

signal
 

and
 

fault
 

signal
 

are
 

classified
 

to
 

achieve
 

the
 

effective
 

prediction
 

of
 

shunting
 

malfunction.
 

By
 

establishing
 

the
 

equivalent
 

model
 

of
 

track
 

circuit
 

to
 

simulate
 

fault
 

data.
 

The
 

energy
 

spectrum
 

feature
 

is
 

extracted
 

by
 

the
 

variational
 

mode
 

decomposition
 

algorithm,
 

and
 

the
 

deep
 

expression
 

feature
 

is
 

extracted
 

by
 

deep
 

learning.
 

They
 

are
 

fused
 

to
 

obtain
 

sensitive
 

feature,
 

which
 

can
 

achieve
 

the
 

effective
 

prediction
 

of
 

bad
 

shunting.
 A

 

new
 

idea
 

is
 

proposed
 

for
 

the
 

prediction
 

of
 

similar
 

non-linear
 

and
 

non-stationary
 

signals,
 

and
 

the
 

parameters
 

optimization
 

method
 

of
 

VMD
 

is
 

also
 

the
 

focus
 

of
 

future
 

research.
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基于组合分析法的轨道电路分路不良预测

郑云水,
 

李钰婕

(兰州交通大学
 

自动化与电气工程学院,
 

甘肃
 

兰州
 

730070)

摘 要: 针对轨道电路故障预测研究受数据制约的现象,
 

本文基于ZPW-2000A型轨道电路的工作原理和

传输线理论,
 

建立了轨道电路六端网模型,
 

来仿真模拟3类分路不良故障信号,
 

并对其进行分析。
 

同时,
 

提

出变分模态分解和卷积神经网络结合的组合分析法,
 

对原始信号进行变分模态分解提取能量谱特征,
 

再与

卷积神经网络提取的深度表达特征进行加权融合,
 

得到敏感特征用于故障预测。
 

轨道电路分路不良预测的

实验结果表明:
 

组合分析法能够准确有效预测分路不良故障,
 

预测的准确率达到99.87%,
 

为轨道电路分路

不良的预测提供了新的思路。
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