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Abstract: In order to solve difficult detection of far and hard objects due to the sparseness and insufficient semantic information
of LiDAR point cloud, a 3D object detection network with multi-modal data adaptive fusion is proposed, which makes use of
multi-neighborhood information of voxel and image information. Firstly, design an improved ResNet that maintains the
structure information of far and hard objects in low-resolution feature maps, which is more suitable for detection task.
Meanwhile, semantema of each image feature map is enhanced by semantic information from all subsequent feature maps.
Secondly, extract multi-neighborhood context information with different receptive field sizes to make up for the defect of
sparseness of point cloud which improves the ability of voxel features to represent the spatial structure and semantic information
of objects. Finally, propose a multi-modal feature adaptive fusion strategy which uses learnable weights to express the
contribution of different modal features to the detection task, and voxel attention further enhances the fused feature expression
of effective target objects. The experimental results on the KITTI benchmark show that this method outperforms VoxelNet
with remarkable margins, i. e. increasing the AP by 8.78% and 5.49% on medium and hard difficulty levels. Meanwhile, our
method achieves greater detection performance compared with many mainstream multi-modal methods, i. e. outperforming the
AP by 1% compared with that of MVX-Net on medium and hard difficulty levels.
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0 Introduction

As an important step in the visual perception
system, 3D object detection has been widely used in
the fields of autonomous driving, robotics, virtual
reality and augmented reality. LiDAR sensors are
widely used in the field of autonomous driving and
robotics due to their direct acquisition of three-
dimensional (3D) structure information and accurate
depth information of space targets. However, due to
the shortcomings of sparseness and insufficient
semantic information of point cloud data, it does not
perform well in accurate far and hard object
detection.

Most of the 3D object detection methods can be
divided into the single sensor and multi sensors
methods according to the modality of input data. The
single sensor methods can be roughly categorized into

grid-based method and PointNet-based method. Grid-
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based method transforms the point cloud into a
regularly spaced grid to make full use of 2D or 3D
convolutional networks, which can extract high-level
representations of features from the grid. MV3D-
uses a compact bird’s-eye view to encode point clouds
and preset multiple 3D anchor boxes to generate 3D
bounding boxes. PIXOR'" projects the point cloud to
the bird’ s-eye view to obtain a dense and compact
representation similar to the image, and then extracts
the point cloud features by a 2D convolutional
network. VoxelNet"! is an end-to-end deep learning
framework which uses the feature extractor layer to
learn voxel features. Second'™ proposes an improved
sparse convolution to replace 3D convolution which
effectively reduces the amount of calculation and
improves inference performance. PointPillar® uses
vertical pillar to replace voxel units and uses 2D

which

improves the detection speed. Part-A2' is a new

convolution to learn point cloud features,
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partial perception aggregation neural network, which

uses partial perception modules and partial

aggregation modules to improve detection
PV-RCNN' high

efficiency of 3D convolution and the advantages of

target
performance. combines  the
variable receptive field of PointNet-based method to
improve the detection performance. Since the point
cloud is sparse and uneven in nature, the sparse voxel
grid brings a lot of redundant calculations and there is
information loss in the process of voxelization and
PointNet-based method

cloud without
[8]

discretization.  Instead,

directly processes the raw point
information loss in the voxelization. PointNet-™ is an
end-to-end deep neural network which directly learns
the global features of the point cloud from the
original point cloud. This method has good effects in
instance segmentation and
PointNet + + improves

PointNet again and can learn the local features of

3D target recognition,

semantic segmentation.

point clouds at different scales. PointRCNN" is a
new two-stage detection framework. The first stage
aims to generate 3D bounding boxes in a bottom-up
scheme, and the second stage improves the 3D
bounding boxes in standard coordinates. STD" is a
new sparse to dense two-stage 3D target detection
framework. The use of spherical anchor frames
The 3D IoU
prediction branch improvement helps to align the
with  the
confidence. VoteNet''™ proposes the Hough voting

improves the target recall rate.

classification  confidence positioning

strategy to better group object features. A large
number of point clouds will lead to high calculation
and memory consumption. The performance of the
above two methods will be worse when detecting
objects from far distances due to the sparsenes and
insufficient semantic information of the point cloud.
For the multi-sensors method, many state-of-the-
art methods combine the data of multiple sensors to
remedy the semantic loss of point clouds. MV3DH-
takes RGB-image, front-view and bird’ s-eye-view as
input, and exploits a 3D region proposal networks
(RPN) to generate 3D proposals. AVODM™ uses a
region proposal network to fuse multi-view features
The second

bounding boxes.

and generate target candidate regions.
stage generates accurate object
MMFM yses correlated multi-task learning to fuse
MVX-Net"™  uses

image features to enhance the point cloud, and learns

multi-modal features. semantic

to fuse image and point cloud features at an early

stage, which improves the performance of target

detection. Frustum PointNets"'® first uses a mature
2D target detection algorithm to obtain the object
proposal frame in the image. Then it uses the
frustum to map proposal to the 3D space candidate
area, and takes the PointNet-based models for target
regression in the second stage.

However, the fusion methods such as MV3DM and
AVOD™ are too coarse because much background
noise exists in the Rols. Besides, these methods are
difficult to detect small objects due to the fact that
structure information of far and hard objects is
seriously lost in high-level feature maps of deep
networks. These methods simply resort to the feature
pyramid network to acquire higher resolution feature
map.

To overcome these shortcomings, based on the
177

VoxelNet method, an improved ResNet"'"” is firstly

proposed to effectively maintain the structure
information of far and small objects in high-level
semantic feature maps. Besides, each image feature
map is enhanced by semantic information from all
subsequent feature maps., not just the subsequent
layer in feature pyramid networks (FPN)M® After
that, each point is enhanced by multi-level image
semantic information in a point-wise manner.
Secondly, multi-neighborhood context information of
each voxel is obtained to solve the sparseness problem
of point cloud. With multiple receptive fields with
different sizes, the different context information will
robustness of voxel

enhance the capability and

features to represent the spatial structure and
semantic information of 3D objects contained in the
voxel. Then, different modal features of point cloud
and image are fused by this adaptive fusion strategy.
Voxel further

expression of effective target objects contained in the

attention enhances the feature

voxel and suppresses the expression of useless
background features. Finally, the voxel features are
sent to the convolutional network and region proposal

network for target detection.

1 Proposed method

1.1 Overall network architecture

As shown in Fig.1, the proposed network

architecture is based on VoxelNet
marked by a dashed box.
point cloud and then uses its voxel feature extractor
(VFE) to extract voxel feature (VF). However, due

architecture

VoxelNet first voxelizes

to the sparseness of point cloud, each voxel lacks
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enough points especially on far and hard objects, so

the VF lacks sufficient semantic information to
effectively represent 3D objects. Outside of the
dashed box are our proposed component. The

proposed network takes the point cloud and RGB
image as input. To obtain the image features in point-
wise manner, the improved ResNet is used as the
image backbone. It is more suitable for far and hard
object detection task to extract multi-level semantic
features. The detailed structure information of far
and hard objects is kept in high-level dilate-reslayer

output feature map. Meanwhile, each feature map is

Multineighbor
context
extraction

enhanced by semantic information from all subsequent
feature maps., not just the subsequent layer in FPN,
After that, each point in the voxel is projected into
from FPN.

extract

the multi-level image feature maps

Bilinear interpolation is wused to image

features. Different image features are concatenated
and then sent to a linear layer to form the final point-
wise 1image features containing structural and
semantic information, which can be used as prior
knowledge to infer the presence of 3D object. Voxel-
wise image feature (IF) can be obtained by point-wise

max-pooling operation.

MF

. |

TVoxelNet 1~~~ """ T T T
! Lidar point 3D
| 1dar pom L] Voxel L | Stacked VFE VF Multimodal feature fusion
I cloud | conv
- ] T ______ o A
—1 IF assificati ;
Projection in point—wise FPN Classification Regression

manner

Image 9 Reslayer— Reslayerd—p Realayer3d—pp| Dilate—reslayer
Fig. 1 Overall structure of proposed network
Secondly, the multi-neighborhood context

is obtained to
At last, different modal

information ( MF) of each voxel
enhance the voxel features.
features are fused adaptively by our fusion strategy
and voxel attention further enhances the effective
and the useless voxel

voxel features suppresses

features. Details of the improved ResNet, multi-
neighborhood context information extraction and the
proposed adaptive fusion technique are described in

the following subsections.

1.2 Improved resNet and FPN

ResNet is usually used as the backbone network
for classification tasks. In order to obtain abundant
semantic information, a large enough receptive field

which will the

resolution of the structure

continuously reduce
The detailed

information of far and hard objects is severely lost,

is required,

image.

which is not suitable for target detection. Detection
task requires not only semantic information for target
classification, but also location information for target
location regression.

In this work, to adapt RseNet to the detection task
and improve detection

of far and hard objects

accuracy, the ResNet is improved by replacing the

residual module with dilated residual module (dires-

module) , as shown in Fig. 2.

Conv 1X1 Conv 1X1
\ Conv 3X3[ |Conv 3x3| [Conv 3X3
Conv 3%3 Rate=1 Rate=2 Rate=5

(b) Dires—module

(a) Residual module

Fig.2 Residual module and dires-module

As shown in Fig.2(a), the residual module of
ResNet is composed of three 2D convolutions with
different kernel sizes. The original 2D convolution
with kernel size of 3 X3 in residual module is replaced
with three parallel-distributed dilated convolutions.

Each of them has the same kernel size of 3 X 3 but
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2 and 5. Dilated

convolution can ensure a large enough receptive field

different dilation rates of 1,

without reducing the image resolution for deep
network, so that the detailed structure information of
far and hard objects will not be lost. At this time, a
large resolution can provide detailed information for
accurate bounding box regression, and large enough
receptive field can provide semantic information for
target classification. It effectively solves the
problems of ResNet with high semantics and low
resolution, which are not suitable for target
detection. The features of three dilated convolutions
are concatenated and fed into the convolution with
kernel size of 1 X 1. Multiple dilation rates are set to
provide different sizes of receptive fields to meet the
different

distances. The receptive field with a low dilation rate

detection requirements of objects at
is small and can effectively focus on short-distance
information, and the receptive field with a high
dilation rate is large and can focus on long-distance
information. The combination of the three obtained
multi-scale information is beneficial to the detection
of near and far objects.

After obtaining the multi-level image features from
improved ResNet, we hope to enhance the semantic
information in low-level feature maps which helps to
infer the presence of objects, so each layer of feature
maps obtains semantic information from = all
subsequent feature maps, not just the subsequent

layer in the FPN. As shown in Fig.3, keep the

reslayerl-reslayer3 of ResNet unchanged and replace
reslayer4 with a dilate-reslayer. The dilate-reslayer
consists of two stacked dires-modules. P, — P,
represent the output feature maps from reslayerl to
dilate-reslayer, and O, — O, represent semantically
enhanced output feature maps. The up arrow means
the upsampling operation that doubles the size of the
input image. The curve arrow means feature map
Note that all the

operations output the same channel dimension. All

concatenation. upsampling

the upsampled feature maps are as
P, =UP,
P, =UP ),
P, =UP, ),

P371 :U(Pg)a
ngz == U(ngl)’
PZ*I :U(Pz)e (1)

where U means the upsampling operations.
After upsampling from P,, the spatial size of
feature map P,—, becomes twice as large and the

spatial size of P,_, gets forth as large and so on.

The O, is got by concatenating the P, 5, P; ;,
P, , and P,. The O,, O; and O, can be obtained as
follows

0O, = concat (P, 5s,Ps,.P, ,P),
0, = concat(P, ,,P;,.,P,),
O; = concat (P, ,,P3),
O, = P,. (2)

Dilate-reslayer

Input
HxWxC

Lt Reslayer I——Reslayer2i—Reslayer3—9»

Dires—module || Dires—module

O O

* Upsample

f\ Feature mapconcat

Fig.3 Improved ResNet with FPN

After that, each output feature map O, — O, will

get enough detailed structure information and

semantic information which helps to infer the

presence of target object. To obtain point-wise image
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features, each point in the voxel is projected into the

four image feature maps O, — O,, respectively.
Extract image features by using  bilinear
interpolation, then concatenate O, — O, features to
obtain multi-level image features in point-wise

manner.,
1.3 Multi-neighborhood context information

VoxelNet randomly discards points during the
voxelization process to ensure the same points
number in each voxel. Furthermore, due to the
sparseness of point cloud, the points number of far
and hard objects contained in voxel is severely
insufficient, so that the voxel feature cannot
effectively characterize the structure of the object.
To solve this problem, set up multiple receptive

fields

neighborhoods context information and enhance the

with different sizes to extract multiple
characterization ability and robustness of voxel
features.

For the given voxel V', take its geometric center V,
as the sampling center and randomly sample K points
in the neighbourhood of the sphere, the radius of
sphere is not greater than u. The neighborhood set S

of V, is
S = {[rjsev
j::l’""K}v (3)

7Cj:| ‘ H Cv. = ¢ H < u,

where r; is the reflection feature of point j; ¢v and ¢;
are the world coordinates of V. and point j
respectively; K is the number of neighbor points of
V.. The coordinate offset and the point cloud feature
are concatenated to indicate the local relative position
of the point cloud feature, thereby effectively
extracting context information. As shown in Fig. 4,
after the sampling operation, we first get the input
feature (K,r+3), where r is the reflection feature

and 3 is the coordinate offset.

Radius=r

K

/

~ —>

Center \ ~—
N

~) Samp.le _»Sla(:ked (:()m
A module
7 1

...... K

~ — s ICnordinate offset |:| Reflection feature

Fig. 4 Multi-neighborhood context information extraction

Next, each input feature is transformed through
the stacked conv module into high dimensional
feature space, where context information from

features can be aggregated to encode the structure of

objects contained in the voxel. The conv module is
composed of a 2D convolution (stride of 1X1, kernel
size of 1 X 1), a batch normalization (BN) and a
rectified linear unit ( ReLLU). The transformed
features belonging to the voxel can be aggregated by
using element-wise max-pooling. At last, the MF of
the voxel is obtained by concatenating the multiple

context information.
1.4 Multi-modal feature fusion

VoxelNet takes a single-modal data as input and
uses its VFE to aggregate the VF. Based on that, we
try to adapt it to multi-modal data input to further
improve its performance. In this work, an adaptive
fusion strategy is proposed to fuse different modal
features. Then further use the voxel attention to
enhance the voxel feature expression of effective
objects and suppress the feature expression of
background objects. It is effective in improving the
detection performance of far and hard objects in
subsequent ablation experiments.

1.4.1

Image data and point cloud data have different data

Adaptive fusion

characteristics and distributions, so we fuse them by
learning the contribution degree of different modal
features to the detection task through learnable
weights. Useful features are assigned higher weights
while useless features are assigned lower weights to
achieve adaptive fusion of different modal features.
As shown in upper part of Fig.5, the VF, IF and
MF are first concatenated and then sent to two linear
layers. The sigmoid operation outputs the weight
coefficient w, of each feature channel. VF, IF and
MF are multiplied by the weight coefficient. After
that, the weighted features are concatenated to
output the fused voxel feature f.
1.4.2 Voxel attention

Voxel attention infers the presence of effective
foreground target objects based on the voxel spatial
position and fused voxel features f. The foreground
target object features contained in the voxel are
assigned higher weights to enhance voxel feature
expression, and useless background object features
contained in the voxel are assigned lower weights to
suppress useless voxel feature expression. As show
in lower part of Fig.5, each fused voxel feature
concatenates its world coordinates to provide accurate
position information of objects. The concatenated
features are sent to a linear layer. The sigmoid

operation outputs the weight w,. The final voxel
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feature v, —wv, are obtained by multiplying the w;,.

Adaptive fusion

VF I »X—>
> X—>
IF ::\—#I Linearl—bl Linear I—>| Sigmoid I—p Cd S

7] i

Voxel attention
v | 4—®< 'y '@‘ fu [
v [ w2 Sigmoid [« Linear 4~ Coord [, |
= | Sigmoid] i Eals
o X /e

& Concat  (X) Multiply  w: weight  f: voxel fusion feature

Fig.5 Adaptive fusion and voxel attention
1.5 Training loss

The proposed framework is trained end-to-end with

classification loss, regression loss and angle

classification loss same with Second™ as

L=aly+a D

€ {xyyrzslshyw,0)

mem//;—l‘l (Ar, Ag‘) + Qs Ldir ’

(4)
where the anchor classification loss L, is calculated
by focal loss™ with default hyper-parameters;
smooth-L, loss is utilized for anchor box regression
with the predicted residual Ar and the regression
target Ag; the direction classification loss Lg, is
calculated with cross entropy loss.

The overall training loss are the sum of these three
losses with different loss weights a1, a, and aj,

which are set to 1.0, 2.0 and 0. 2, respectively.

2 Experiments

2.1 Experimental setup

2.1.1
The proposed network is evaluated on the KITTI

Datasets

dataset”®™ which is the one of the most popular
datasets of 3D detection for autonomous driving.
There are 7 481 training samples and 7 518 test
samples which are divided into three difficulty levels:
easy level, medium level and hard level based on the
object size, occlusion and truncation. Since the label
of the testing set cannot be obtained, we split the

training set into train/validation sets to avoid the

samples from the same sequence being included in
both sets. After spliting the training samples, there
are 3 712 samples in train set and 3 769 samples in
validation set.
2.1.2 Metric

We adopt the average precision (AP) measured by
11 recall positions and 3 classes of mean average
precision (mAP) as the metric to compare it with
different methods. To prove the effect of proposed
network on detecting far and hard objects, we mainly
compare it with other methods at the medium and
hard difficulty levels. During evaluation, we follow
the official KITTI evaluation protocol: the IoU
thresholds for class car, pedestrian and cyclist are
0.7, 0.5 and 0. 5, respectively.
2.1.3

For the KITTI dataset, the detection range is from
0 m to 70. 4 m for the X axis, from —40 m to 40 m

Network architecture

for the Y axis and from —3 m to 1 m for the Z axis,
which is voxelized with the voxel size of 0. 05 m,
0.05 m and 0. 1 m in each axis. So the voxel grids
range is [ 41, 1 600, 1 408]. For image backbone,
keep the ResNet-50

unchanged and replace the reslayerd with a dilate-

reslayerl-reslayer3 of the
reslayer, which consists of two stacked dires-
modules. The first 2D convolution with dires-module
of stride 1 X1 reduces the feature channel dimension
from reslayer3 to 256, and each output feature
channel dimension of each dilated convolution is set
to 256, the last 2D convolution with stride 1 X 1
transforms the feature channel dimension from 768 to
1 024. The final output feature maps from improved
ResNet are the four feature maps P, — P, with
channel dimension of 256, 512, 1024 and 1 024.
Then wuse a 2D convolution to
dimensionality of 256, 512, 1 024 and 1 024 to 128.

For 3D convolution medium layers, employ 3D sparse

reduce the

convolution in Second™ to speed up the inference
time. We employ three phases of sparse convolution
rather than two phases in Second. FEach phase
contains a sparse convolution to  perform
downsampling in each axis and two submanifold
convolutions. The final output feature size is (5,200,
176 ] reduced by 8 times and dimension of the feature
is 256. For multi-neighborhood feature extraction,
two different radius of 0.4 m and 0. 8 m are set, the
neighborhoods number K is set to 16, and the output
feature dimension is set to 32.

2.1.4

The network is trained in an end-to-end manner by

Implementation details
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the AdamW optimizer with an initial learning rate of
0. 003, the betas are set to 0. 95 and 0. 99,
respectively. Batch size is set to 1. The network is
trained with 100 epochs.

For the data augmentation, since the point cloud
and image multi-modal data are used at the same
time, the data augmentation of the point cloud needs
to be consistent with the image data augmentation,
so individual ground-truth box augmentation strategy
is not used. Random flipping, global rotation and
global scaling are applied to the point cloud. The
noise for global rotation is uniformly drawn from
—n/4 to w/4 and the scaling factor is uniformly
drawn from 0. 95 to 1. 05.

2.2 3D detection on KITTI dataset
2.2.1

The proposed network is based on VoxelNet, so

Comparison with VoxelNet

we first compare its performance with VoxelNet on
far and hard objects. Table 1 shows the results of
For the

most important 3D object detection benchmark of the

comparison performance with VoxelNet.

car class, our method outperforms VoxelNet with
remarkable margins, i. e. increasing the AP by
8.78% and 5. 49% on medium and hard difficulty
levels. For the BEV detection of the car class, our
method also achieves greater performance on medium
and hard difficulty levels. As for the 3D detection
and BEV detection of pedestrian and cyclist, our
method outperforms VoxelNet significantly. The
results prove the effectiveness of proposed method

improves the detection
and hard objects. The

effectiveness of each component of the network will

and overall network

performance of far

be explained in the ablation studies.

Table 1 Performance comparison with VoxelNet on far and hard objects with AP (%)

Car Pedestrian Cyeclist
Detection Method Modality

Medium Hard Medium Hard Medium Hard
VoxelNet LiDAR only 65. 46 62.85 53.42 48. 87 47.65 45.11
3D Proposed method RGB + LiDAR 74. 24 68. 34 56.97 51.40 51.50 46.42
Improvement +8.78 +5.49 +3.55 +2.53 +3.85 +1.32
VoxelNet LiDAR only 84. 81 78.57 61.05 56.98 52.18 50. 49
BEV Proposed method RGB + LiDAR 86. 00 79.57 61.68 58. 74 54.79 53. 00
Improvement +1.19 +1.00 +0.63 +1.76 +2.61 +2.51

2.2.2 Comparison with mainstream multi-modal
methods

To prove the superiority of our method, we

compare it with multiple multi-modal methods on far

and hard objects. As shown in Table 2, on the 3D

objection detection benchmark of the car class, our

method state-of-the-art

outperforms  previous

methods on medium and hard difficulty levels.

Table 2 Performance comparison with mainstream multi-modal
method on Car class with AP (%)

3D AP(Car)

Method Modality
Medium Hard
MV3D RGB + LiDAR 62.7 56. 6
ContFusel?! RGB + LiDAR 66. 2 64.0
F-PointNet %] RGB + LiDAR 70.9 63.7
MVX-Net!1%] RGB + LiDAR 73.3 67.4
Proposed method RGB + LiDAR 74.2 68.3

In MVX-Net, there is information loss of far and
hard object in high-level feature map from its VGG16
conv5 layer, while our method uses improved dilate-
reslayer to keep the detailed structure information of

far and hard objects in high-level feature maps which

will be proved effectively in ablation studies.
2.2.3 Visualization of detection results

Part of the experimental results are projected onto
the image for visualization. As shown in Fig. 6, the
first row represents the groundtruth of the scene,
including six cars in the vicinity, three cars in the

distance and a very heavily blocked car.

ot occluded
Partly occluded

VoxelNet Groudtruth

Our method

Fig. 6 Visual display of predicted results
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The second row represents the detection results of
VoxelNet. VoxelNet successfully detected six nearby
cars without occlusion and full of rich point cloud
information. But VoxelNet missed the two farthest
cars which were partially occluded and the point
cloud was sparse (indicated by a cross). The third
row is the detection results of proposed method. Our
method successfully detected all the detection results
of VoxelNet. Besides, it is worth noting that it
successfully detected two partially occluded cars in
the distance that VoxelNet missed (indicated by a
tick ).
proposed method makes up for the defects of

The visualization results show that the

sparseness and insufficient information of point cloud

by {fusing multi-modal features and effectively
improves performance in detecting far and hard

objects.
2.3 Ablation studies

2.3.1

The effects of improved ResNet was investigated

Effects of improved ResNet

by replacing it with unmodified ResNet and keeping
all the modules unchanged including the reslayer4.
All the ablation studies are evaluated 3 classes mAP
of the car, pedestrian and cyclist on 3D car detection,
which is more reliable and convincing. Table 3 shows
that mAP drops about 1% and 0.5% on medium and
hard difficulty
ResNet, which validates that proposed ResNet can

levels when replacing improved
keep the detailed structure information of far and
hard objects in high-level feature maps and is

beneficial for inferring the presence of objects.

Table 3 Effects of proposed improved RseNet: mAP (%)

3D mAP (3 class on car)

Method
Medium Hard
Unmodified ResNet 60. 02 54.99
Improved ResNet 60.91 55.39

As shown in Fig. 7, Figs. 7(a) and (b) represent
the ground truth bounding boxes in RGB image and
point cloud. Figs.7(c) and (d) are the predicted
bounding boxes of improve ResNet and unmodified
ResNet, respectively. Unmodified ResNet fails to
detect the front right car which is far and seriously
occluded, while our improved ResNet successfully
detects all the ground truth bounding boxes. It
proves that our method is robust and effective when

detecting far and hard objects.

ot occluded 20 Bounding Boxes J=

training set frame 7480/7480

(b) Ground truth
bounding boxes
in point cloud

(d) Detection resul
of unmodified

ResNet

() Detection results
of improved

ResNet

Fig.7 Visual display of predicted results of improved ResNet

and unmodified ResNet

2.3.2 Effects of proposed fusion strategy and voxel
attention

Table 4 validates the effectiveness of proposed
adaptive fusion strategy and voxel attention. As
shown in the first and second rows of Table 4, we
first concatenate different modal features and use the
voxel attention, the mAP improves 1. 7% on medium
difficulty level which proves the effectiveness of
voxel attention that enhances the features expression
of effective objects. To further improve the effects of
adaptive fusion, we change the simple concatenation
to our adaptive fusion strategy. the mAP improves
by 2.60% and 1.19% greatly on medium and hard
difficulty levels respectively, which validates the
importance of different modal adaptive fusion. This
benefits from that the adaptive fusion can tell
features to the

importance of different modal

detection task by the learnable weights.

Table 4 Effects of proposed fusion strategy and voxel attention (%)

3D mAP (3 class on Car)

SC VA AF

Medium Hard
N X X 56.61 54.18
J J X 58.31 54. 20
X Ni N 60. 91 55.39

(SC: Simply concat, VA : voxel attention, AF: adaptive fusion)

2.3.3 Effects of different components of network
As shown in Table 5, the importance of different
components of proposed method was investigated.
The first and second row show that the performance
improves greatly by adding the improved RestNet
which validates that the image information is

effectively extracted and the point cloud features are
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strengthened. The point cloud features are rich in
semantic information, which is conducive to inferring
Furthermore, the mAP

increases by a large margin on medium and hard

the existence of objects.

difficulty levels by adding the multi-neighborhood
context information. It proves that enough context
information effectively makes up for the sparseness of
point cloud and makes the voxel feature rich in the
spatial structure and semantic information of 3D

objects are useful for detecting far and hard objects.

Table 5 Effects of different components of network: mAP (%)

3D MAP (3 class on Car)

IR MN

Medium Hard
X X 55.51 52.28
N X 57.94 53.72
NG NG 60. 91 55. 39

(IR: Improved ResNet, MN:Multi-neighborhood context)

3 Conclusions

In this paper, an adaptive multi-modal feature
fusion for 3D object detection is proposed to solve the
problem of sparseness and insufficient semantic
information of single-modal point cloud and to
improve the detection performance of far and hard
objects. The improved RseNet is designed to extract
point-wise multi-level image feature and maintain the
detailed structure information of far and hard objects
in high-level feature map simultaneously. Each multi-
level feature map from improved RseNet is further
enhanced by the semantic information from all
subsequent feature maps, not just the subsequent
layer in the FPN, which is beneficial to infer the
presence of far and hard objects. Then the multi-
neighborbood context information is extracted to
make the voxel feature contained in the far and hard
objects rich in spatial structure and semantic
information of 3D objects, which is useful for
detecting far and hard objects. The adaptive fusion
strategy is proposed to fuse these different modal
features according to their contribution to the
detection task. The voxel attention further enhances
the fused voxel features of effective target objects and
supresses the invalid background objects features.
All the proposed components are proved to be
effective in ablation studies and the overall
framework can significantly improve the detection
performance of far and hard objects compared with
VoxelNet

methods.

mainstream  multi-modal

method

and many

Specifically, our outperforms

VoxelNet with remarkable margins, i. e. increasing
the AP by 8.78% and 5.49% on medium and hard
difficulty levels. Meanwhile, our method achieves

greater detection performance compared with multi-
modal method MVX-Net, the AP is increased by 1%

on medium and hard difficulty levels.
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