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Lithium battery state of charge and state of health
prediction based on fuzzy Kalman filtering
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Abstract: This paper presents a more accurate battery state of charge (SOC) and state of health (SOH) estimation method. A
lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model. The model parameters
are estimated by searching least square error optimization algorithm. Precisely defined by this method, the model parameters
allow to accurately determine the capacity of the battery, which in turn allows to specify the SOC prediction value used as a
basis for the SOH value. Application of the extended Kalman filter (EKF) removes the need of prior known initial SOC, and
applying the fuzzy logic helps to eliminate the measurement and process noise. Simulation results obtained during the urban
dynamometer driving schedule (UDDS) test show that the maximum error in estimation of the battery SOC is 0. 66 %. Battery

capacity is estimate by offline updated Kalman filter, and then SOH will be predicted. The maximum error in estimation of the

battery capacity is 1. 55%.
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0 Introduction

Rapid

inevitably increase global challenges, such as global

transport and economy development

warming and air pollution. Therefore, in recent
years, more and more attention is paid to electric
vehicles because of their efficiency and environmental
friendliness. The

important and expensive components of an electric

battery is one of the most

vehicle. The development of new technologies related
to batteries has an impact over the electric transport
( BMS)

controls the operation of the battery. In order to

industry. Battery management systems
ensure a safe operation of the electric vehicle,
prevent deep discharge or overcharging of the
battery, accurately estimate residual mileage, extend
the lifetime,

prevent progressively permanent

damage to the battery and maximize battery
performance, the BMS must have an accurate value
of state of charge (SOC). In addition, to improve the
reliability of operation and to warn the driver about

the future replacement of the battery, the BMS needs
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the value of state of health (SOH).

Processes and chemical reactions proceeding inside
lithium battery are complex and nonlinear. Work
processes are influenced by residual capacity of
aging,
internal resistance, self-discharge, charge-discharge
Therefore, SOC

estimation problem are complex and important, but

battery, voltage, temperature, current,

cycle number and other factors.

existing SOC prediction methods have relatively large
error.

Battery SOC can be calculated by the Coulomb
counting method or the open circuit voltage
method'"*), These two methods are simple and easy
to apply at practical terms. However, these methods
have disadvantages: both of them are open-loop and
sensitive to the sensor precision. Moreover, open
circuit voltage-SOC curve is flat on wide SOC range
that makes it impossible to estimate SOC accurately.
Therefore, estimation errors in all of these methods
are very high. Some generic methods, such as a
neural networks, fuzzy logic and support vector
“ black box ” SOC

machine, have provided
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estimation™?’,

The main weak points of these
methods are their sensitivity to amount and quality of
Advanced methods,

Kalman filter and sliding observers, are based on

training data. such as the

linear dynamic systems discretized in the time and

(71, and only estimate the state from the

estimator
previous time step and the current measurements.
However, these methods highly depend on the model
accuracy, and are the most complicated in the aspect
of computing. Although the extended Kalman filter
(EKF) can provide good estimation results, this
method is not suitable for non-Gaussian noise and
highly nonlinear systems because of large cumulative
estimation error. To improve the accuracy of SOC
estimation, the adaptive extended Kalman filter
(AEKF) algorithm has been applied. The value of
the measurement noise covariance is adaptively
adjusted in the estimation process, thus improving
the estimation accuracy.

Some methods have low estimation accuracy, also
most of the methods above deal only with SOC and
do not take into account battery degradation and its
SOH. Nevertheless, accuracy of SOC estimation is
heavily influenced by the battery aging condition.
Inaccurate calculation of SOC will reduce vehicle
performance in case of undercharging or even may
damage to the battery system due to
Therefore,

battery states prediction are urgent.

cause
overcharging. the needs of accurate

Therefore, at first, the proposed method improves
SOC prediction accuracy by improving accuracy of
estimation ~ model parameters, Second-order
equivalent circuit model best of all reflects a real
state and searching model

battery parameters

optimization  algorithm  has  relatively  good
performance. Secondly, through applying of adaptive
EKF algorithm,
demand
thereby

accuracy. Finally, the accurate SOC value increases

self-adjusted measurement noise

removes the of prior known initial

covariances, improving SOC estimation
SOH prediction algorithm efficiency.
In this paper, the lithium battery equivalent circuit

Model

estimated in discharging test by least square error

model is represented. parameters are
optimization algorithm. Based on model parameters
and state space equations, AEKF estimates SOC.
Then, the battery SOH is predicted by estimating
filter.
prediction is validated in the urban dynamometer

driving schedule (UDDS) test.

battery capacity Kalman Efficiency of

1 Battery modelling

1.1 Equivalent circuit model

There are many types of equivalent circuit models
used to describe lithiumion battery work, such as
Rint model, Thevinin model, the partnership for a
new generation of vehicles (PNGV) model, etc.
However, because of processes nonlinearity, some of
them cannot reflect a real cell process carefully,
which leads to comparatively large modeling error®’,

As shown in Fig. 1, every discharge pulse actually
leads to nonlinear voltage response., containing the
instantaneous part caused by battery resistance and

delayed part caused by battery capacity.

Pulse discharge

Current -
Time
Discharge pulse
Io
- Open circuit potential
: Vi
Voltage ° Instantaneous response
Delayed response

Time
Fig. 1 Real process nonlinearity

The best model reflecting the real state of battery
for today is the second-order equivalent model™, as
shown in Fig. 2. It consists of the open circuit
voltage (OCV) E;, battery ohmic resistance R,, and
two sets of parallel resistor-capacitor combination
R,, C, and R,, C, representing the mass transport

effect and the double layer effect, respectively.
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Fig. 2 Second-order equivalent circuit model

According to the model, battery electrical behavior
can be expressed by

vy = Ey + v + v, + iR, (D
v o du v o de
[ = ]+Cl & 2+Lz Q- (2)

Coulomb-counting SOC definition is-'"

.S‘:S()*erol‘(t)dtv (3)

where s, is the initial SOC, % is the Coulomb
efficiency coefficient and Q. is the battery rated
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capacity. Combining Egs. (1), (2) with (3), we
obtain the battery state space equation in discrete

form
Skt 1 0 0 Sk
Vi | = |0 € 0 v |+
V2.1 0 0 e 2| vy,
- UT/Q,» W1,k
fp | RiAA—e M 4 |y | s 4
R, (1—el'= Wi,k

Vo, — Eoék + 1. +U2.k JrinnkRo —+ v (5

where 1;=R,C; s ©5=R,Css and x, =[sps 0145020 "
are state variables; 7, is the control variable; wv,., is
the measurement variable; w, = [ w1 s wopsws |- 18
the process noise with covariance Q; and v, is the
measurement noise with covariance R.

1.2 Model estimation and

validation

parameters

Model parameters cannot be taken as constants
because of their changes under different battery
temperatures and ages. To complete state space
equation and apply an EKF algorithm, the model
parameters must be estimated. In order to provide
better online prediction of SOC, truly estimate the
battery capacity Q,, and reduce future errors in the
following steps, it is essential to estimate the model
parameters as accurately as possible.  Some
researchers use genetic algorithm or nonlinear curve
fitting technics for searching parameters at definite
space, but these methods require good quality of
initial parameter values and searching space. This
paper presents a parameter estimation technology
based on Matlab parameter estimation tool
algorithm, The parameters estimated by nonlinear
least squares optimization method namely Levenberg-
Marquardt algorithm. The algorithm minimizes the
sum square error on the test data, as shown in
Fig. 3.

Levenberg-Marquardt (LM) method is a good
optimization algorithm, which can adaptively adjust
itself to the gradient-descent or Gauss-Newton
method depending on the distance from optimal
In addition, LM algorithm has

convergence and better efficiency compared to both

values. faster
methods that are mentioned above.
Nonlinear least squares regression object function

is expressed as

N
mginZ(ym(tl) — (1,007, (6)

i=1

where v,,(z;) is the measured voltage, and v, (z;,8)
is the model predicted voltage with parameter vector
0.

The LM algorithm is used to solve the optimization

problem of Eq.(6) by adding the parameter
correction vector, and then we get
A=A +J" DY, —Y), D

where J is the Jacobian matrix, Y is the vector of the
predicted voltages, Y,, is the vector of the measured
voltages, and A is the damping factor.

R
in

e Measured
— Simulated

by
=)

(98]
n
T

Exported voltage

»
==

L
=
5

_300 0.5 1.0 1.5 2.0 25 3.0 35 4.0
t (S) X104

(a) Discharge pulse test

Estimated params

»
=

N

5
Ry

Scaled values of estimated parameter

ocl>
l
6

Iteration times

(b) Parameters estimation process

Fig.3 Parameter estimation by

optimization algorithm,

Levenberg-Marquardt

Parameters estimation algorithm efficiency is
validated by discharging test on the simulation data
set, and sum square error is about 0, 000 1.

2 SOC estimation with
extended Kalman filter

adaptive

Kalman filter is a reducing mean square error
mathematic technique commonly used for estimating
the system states. One significant disadvantage of
Kalman filter is its assumption that covariance of
measurement and process noises are known. This
peculiarly brings a large error in some cases, such as
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wrong or unknown initial noise. Therefore, in these
conditions, EKF, which can adaptively adjust noise

covariance, can reach better estimation performance.

Generally, EKF uses further state-space
framework as

X1 = Ax, + Bu, +w s €

Y1 = Cxpn +Duy + v s €))

where x, is a system state vector, w, IS a system
process noise, v, is a measurement noise. w, and v,
both are the zero mean Gaussian noise with time-
invariant covariance Q. and R;, respectively. Y, is
system output estimates. A, B, C and D are
matrices, describing dynamics of the system.

The process noise for the SOC, v, and v, will be
estimated based on dynamic characteristics of the
battery of Eq. (3).
discharge cycle is about 5 000 s. The maximum
change is 100% for SOC, and around 2 V for v, and
vy. The maximum change per step for SOC is

100 %
=ooo T (10)

The duration of one charge-

max(\ dag()( |) =~
And for v, and v, » there is

T, (1D

max(| dv; |) = max(]| dv, |) &=

2

5 000

where T=1 s is filter sampling time.
Therefore, the process noise w; is expressed as

w, =
max( | ddsc [)° 0 0
0 max(| du, |)? 0 %
0 0 max(| dv, |)?
41078 0 0
0 1.6 X107 0 . (12
0 0 1.7 X 1077

Process noise initial covariance shows how accurate
the initial guess is. Assuming that the maximum
initial guess error is 40% for SOC and 1 V for v, and
vy » we obtain the following initial covariance matrix,
which consists of squares of initial guess errors as

0.16 0 0
Q=10 1 ol (13)
0 0 1

The main idea of AEKF is to provide self-

adaptation to the system measurement noise
covariance R. The purpose of adaptive approach is to
make the theoretical noise covariance stay in step

with the actual noise covariance using fuzzy logic.

The adaptive approach several steps are as follows:
Step 1) Theoretical measurement noise

N, = G, P,;'C! +R,. (14
Step 2) Actual measurement noise
k
N?,:%Erirg‘v (15)
i=ig
where r,=Y,—; —C,x,—, is EKF residual sequence.

Step 3) Difference between actual noise and
theoretical noise

AN = N, —N,. (16)
On this step, fuzzy logic is applied. If the
difference between the actual and theoretical

measurement noise AN is greater than zero, noise
covariance R, will be reduced. Otherwise, when AN
is smaller than zero, R, will be increased. Noise
covariance value R, is controlled and automatically
corrected by the adjustment factor a

Rk — aR;H. (17)

In order to provide auto-updating measurement,
noise covariance fuzzy logic controller with AN input
and a output were shown in Table 1.

Table 1 Input and output fuzzy subsets

Variable

Fuzzy subset Value
and range

Highly negative [-1.5 —1 —0.5]

Negati —1 —0.5 0
AN egative L ) 5 0]
Zero [—0.5 0 0.5]
[—1.5 1.5] .
Positive [0 0.5 1]
Highly positive [0.5 1 1.5]
Greatly decrease [0.25 0.5 0.75]
Slightly decrease [0.5 0.75 1]
0.5 “ L8] Unchanged [0.75 1 1.25]
Slightly increase [1 125 1.5]
Greatly increase [1.25 1.5 1.75]

According to Egs. (14) — (17), fuzzy logic rules
are formulated as follows:
1) If AN is highly negative, than greatly increase

2) If AN is negative, a slightly increases.

3) If AN is zero, « is unchanged.

4) 1f AN is positive, a slightly decreases.

5) If AN is highly positive, a greatly decreases.

Adaptive fuzzy approach helps more accurate
correct system measurement noise and increase EKF
performance.

3 SOH prediction

During operation, the battery is aging, and its
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properties begin to deteriorate. The maximum

capacity decreases, and the internal resistance
increases. Correction of SOH prediction helps to
assure safety operation of the electric vehicle and
provide knowledge about the battery degradation
degree, SOH is a parameter, which reflects the
general conditions of the battery and its ability to
deliver the specified performance compared with the

fresh battery, and it is defined as

Sson = % X 100%. (18)

Good prediction of SOH is very important. In case
of electric vehicles, the ability to achieve the
announced range dramatically fades with battery
aging. In this paper, SOH ranges from 0 to 100%.
Among them, 0% SOH stands for end of life; when
the battery capacity reaches 75% of fresh battery
capacity, it has to be replaced; and 100% SOH
stands for brand new fresh battery conditions,

namely
Cror = 0. 75C,eu. (19

Because parameters estimation error is very small
in Fig. 3, the measurement capacity by integrating
the current over a charge or discharge cycle
( Coulomb counting) method is assumed to be
reliable. Since the degradation rate of battery
capacity C; is not known in advance, it has been set

to a random walk in state transition as
Cii =C +w.s 20)

where 7 is the number of charge-discharge cycles, w,
is the process noise. The measurement equation is

expressed as

C,‘ :C,“F'U(-’ (21)
where C; is the measured capacity, . is the
measurement noise. The battery automatically

charges until it reaches s, » and then turns to

discharge until it reaches Jsoc ;.  Capacity
measurement equation can be rewritten as
",
J Ide
C=r—"—+n. (22)
0 soc; T 35()(.‘,7

1

Then, offline event-based Kalman filter is applied.

4 Simulation results

In order to prove the effectiveness of the method
above, a simulation was performed. Simulation
object is the lithium battery with a rated voltage of

3.7 V and a rated capacity of 4. 4 Ah. Battery height
is 146 mm, weight is 85 mm and thickness is 3 mm.
Firstly, the
parameters were estimated based on the data obtained

battery equivalent circuit model
from the discharge test. Discharge pulse test consists
of ten short discharge impulses, on condition that the
time between pulses is at least 4 times longer than
one pulse duration. This testing method allows
getting the voltage nonlinearities caused by mass
transport and double layer effects (Fig.1) more
accurately. The model parameters were optimized
according to the reference terminal voltage signal
until the sum square error reaches 0. 000 1 (Fig. 3).
In order to take into account the temperature
influence, model parameters were estimated three
times at different temperatures (5, 25, 40 ‘C). The
resulting parameters were entered in look up tables
for each element of the equivalent circuit model.
Then, the battery SOC was estimated by AEKF,
using the measured current, voltage, temperature
and estimated model parameters., During the UDDS
test, the battery alternates between charging and

discharging cycles, as shown in Fig. 4.
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(a) UDDS test voltage

0 0.5 1.0 1.5 2.0 2.5 3.0
x10*
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(=]

5t ) . : - ) ‘ ‘ - - R
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x10°

(c) UDDS test current (two cycles timeframe)
Fig. 4 UDDS test procedure

Battery discharged by random amplitude current
pulses (from 1 to 10A), which imitates real city
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driving condition until it reaches 30% SOC, then
turns to charging. Battery charges until it reaches
90% SOC, then again turns to discharge. During the
test, AEKF battery SOC based on

measured voltage, circuit and model parameters

estimates

according to procedure mentioned in Section 2. The

experiment was conducted 15 times under the
different conditions. Different randomly generated in
UDDS test procedure current pulses statistically
validate archived results. Simulation results show
that AEKF reaches the best quality, as shown in

Fig. 5.
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(a) SOC estimation by AEKF during UDDS test
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(d) SOC estimation error (EKF estimation)
Fig. 5 SOC prediction results

In average, the maximum error SOC value
estimated by AEKF is 0.655% compared with the
maximum error (1. 49%) in the Coulomb counting
estimation and the maximum error (1. 155%) in the
EKF estimation, respectively, as listed in Table 2.

Table 2 Compression of estimation methods

. . Coulomb
Estimation method . EKF AEKF
counting
Maximum error (%) 1. 49 1. 155 0. 655

After successfully obtaining model parameters and
SOC, the battery continues to operate according to
the UDDS test until its capacity reaches 75% of the
At the time
battery SOH considers to be 0. In this simulation,

new battery capacity (end of life).

the battery’s end of life is achieved after 813 charge-
discharge cycles.

Battery capacity is rated by offline Kalman filter of
Eqgs. (20) — (21) based on the model parameters at
the end of every cycle. Capacity prediction maximum
error is 1. 55%, as shown in Fig. 6. Then, according
to the relationship between capacity and SOH is
predicted, as listed in Table 3.

Table 3 Relationship between battery capacity and SOH

Crow 4.4 4.33 4.25 4.18 4.11 4.03 3.96 3.89

SOH 100 93 87 80 73 67 60 53

Crow 3.81 3.74 3.67 3.59 3.52 3.45 3.37 3.3

SOH 47 40 33 27 20 13 7 0
5.0
—_ Actual
‘é 4.5 = = =KF estimate | 4
z
.g 4.0+
5 as
3.0 * * * * * *
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t(s) x10°

(a) Capacity estimation results

S
=
g
5
S
< Y:-1.55
' 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
') x10°

(b) Capacity estimation error

Fig. 6 Capacity estimation results

5 Conclusion

an SOC and SOH prediction
algorithm based on fuzzy Kalman filtering has been

In this paper,

developed. The nonlinear model that takes into
account the temperature of the battery and consists of
two resistance-capacity circuit and open circuit
voltage has been built. Model parameters have been

estimated by optimization algorithm according to the
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test data. Battery SOC has been estimated by AEKF
and validated under the close to real driving test
cycle. Based on KF estimated battery capacity, SOH
value has been predicted. Simulation results show
that the proposed algorithm is reliable because of its
high accuracy in predicting the parameters of both
SOC and SOH. Moreover, the supposed algorithm
does not need the exact initial condition.
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