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Information fusion of train speed and distance measurements
based on fuzzy adaptive Kalman filter algorithm
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Abstract: The measurement accuracy of speed and distance in high-speed train directly affects the control precision and driving
efficiency of train control system. To improve the capability of train self-control, a combined speed measurement and
positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve
the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering
precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive
evaluation method to evaluate the sub-filter, and information distribution coefficients are dynamically adjusted according to
filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub-filter is required to carry
on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is
obtained according to the minimized cost function, which can improve the matching degree between the measured residual
variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes

of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed

and distance.
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0 Introduction

With the globalization of high-speed railway and
the continuous improvement of traffic speed, a single
speed measuring method has already been unable to
meet the requirements of railway operation safety and
efficiency. And it is a new development trend of train
control system to improve the train self-control
capability and measure the speed and distance
independently under the conditions that reduce the
With the rapid

development of the multi-sensor information fusion

reliance on the wayside equipment-.

technology, multi-sensor combination positioning has

been gradually applied in the railway system, which

collects more complementary information to provide

more accurate information for train control system.,

so as to ensure the reliability and accuracy of the
E s a[2-3]

train information"**".

At present, federated Kalman filter is widely used
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in information fusion system because of small
computation and high reliability. But in practical
applications, the sub-filter usually uses a standard

which

characteristics of noise and mathematical model to

filter, requires accurate statistical
ensure filtering accuracy. However, during the train
operation, the statistical characteristics will change
and lead to filtering accuracy decreasing or even
diverging. In the current train control system, the
measurement accuracies of speed and distance are not
high and there is a large difference between the

situations'. In

measured results and actual
Ref.[5], a standard filter is used for information
fusion and adaptive filtering is not implemented.
This paper uses the ground balise to calibrate location

which

equipment, In Ref.[6], an improved method for

information overly relies on wayside

Kalman filtering is proposed, which adds sensor
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noise estimation in the filter to estimate and correct
statistical features, but fails to dynamically adjust
the information distribution coefficients. In Ref. [7],
the robust adaptive kalman filtering is introduced.
And the

covariance matrix Or measurement noise covariance

self-adaptation of the process noise
matrix are processed respectively according to the
different types of aircraft faults.

To solve practical problems, it is a pressing task to
select the sensors that need to be combined,
determine the structure of information fusion, reduce
the computation load, and so on. In order to improve
the measurement precision and save costs, this paper
combines speed sensor, radar*’ and global
positioning system (GPS)™' to measure train speed
and distance, and calibrates the running mileage with
the precise position provided by GPS, which does not
rely on the balise. Federated Kalman filter algorithm
is adopted to realize multi-information fusion and
fuzzy comprehensive evaluation method is used to
evaluate the filtering effect of each sub-filter. The
information distribution coefficients are dynamically
adjusted according to the filtering confidence of the
sub-filters, so as to achieve the global optimum
estimation. If the sub-filter is in sub-optimal state, it
will carry on covariance shaping adaptive adjustment
process, and the filtering accuracy and robustness
can be guaranteed by reducing the mismatch between
the residual variance and the measured residual

variance.

1 'Train integrated positioning system

At present, speed sensor is the basic measurement
device of speed and distance in the railway field. In
China, the speed is measured only by use of speed
sensor in the train control system when the speed is
under 200 km/s. The 300T uses speed sensor and
radar to obtain four-way speed measurements, and
the ATP uses the maximum value to calculate the

Lo, measuring

speed monitoring curve whose
precision and traffic efficiency are low. Moreover,
there are accumulated errors in the calculation of
running distance by integral. Although the ground
balise is used to realize the running distance
calibration and eliminate the accumulated errors, a
large number of balises needed will lead to some
problems such as high cost, difficult line update,
calibration, calibration

unavailable speed

discontinuity, and so on. In view of the above
problems, this paper adopts GPS to assist speed
sensor and radar to realize combination speed
measurement and positioning, so as to improve the
measurement accuracy of train speed and distance,
reduce the dependence on the ground equipment and
improve the capacity of train self-control.

In Table 1, the advantages and disadvantages of
the commonly used speed measuring methods are
compared, and the principles of measurement and

errors sources are different.

Table 1 Comparison of commonly used speed measuring methods

Speed measuring method Advantage

Disadvantage

Tachometer motor Simple

Laser velocimetry Simple

High cost-performance, stable work and

Speed sensor

no environmental impact

Continuous and real-time speed, direction and

Doppler radar

location information

Strong autonomy, high measurement accuracy,

Inertial positioning system

anti-interference

Poor accuracy and reliability
Poor accuracy and being interfered easily
Error accumulation, affected by idling,
sliding and wheel wear
Affected by car body vibration, installation angle
and weather environment, and high failure rate
High cost, complex structure, poor

maintainability, and errors accumulation over time

Low cost. ease of maintainance, real-time

Global positioning system

accumulation of errors

measurement, high accuracy and no

Signal blind areas

2 Application of federated Kalman

filter

Since the sensor itself can not eliminate the impact

of measurement noise and external random

interference on measurement accuracy, it is necessary

to use filtering algorithm for multi-sensor

information fusion. Moreover, the internal computer
can not store large amounts of data during the train
running and the fusion of speed and distance
information must be carried out in real time, so the
federated Kalman filter"'"! with small computation,
good real-time and good fault tolerance performance
is the first choice to solve the problem of dynamical

integration of train speed and distance information.
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In this paper, the federated Kalman filter structure
The

three sub-filters work in parallel to realize time

consists of a main filter and three sub-filters.

update and measurements update independently to

obtain the local optimal state of train information and

X, (k) =¢k— DX, (k— 1) +Gk—DW(k —1),

Z: (k) = H, ()X, (k) +V,(k),

where i=1,2,3, represent speed sensors, radar and
GPS, respectively; X; (k) represents the train state
vector at time step k; ¢ (k& — 1) represents state

transition matrix; W(k—1) represents the system

then input the local optimal state to the main filter
for global fusion.

The

equation and measurement equation of each sensor in

The structure is shown in Fig. 1. state

the system are established as
(D
(2)

process noise vector at time step k—1; Z; (k)
the H,‘ ( k )

respresents the sensor measurement matrix; and

represents sensor observed value;

V.(k) respresents the measurement noise vector.

X,B'P
Detection ] N Main filter
Wheel and handle |Z(k) [ gup. | XP
Speed diameter [ ofidle ™ filter 1 >
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. T.
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detection X BIP
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calculation filter 3
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detection

Fig. 1

In the main filter, global information fusion is

implemented as

3
Xk =P D P (X, (k)

i=1

P(k) — [ip,‘(k)]”,

=1

(3

4)

where X (%) is the global state estimation at time step
ks X, (k) is the state estimation of sub-filter; P(%) is
the global state vector covariance at time step k; and
P; (k) is the covariance estimation of sub-filter.

At the same time, the main filter also dynamically
the

information and common observation information to

returns noise information, initial condition

3
each sub-filter, as shown in Fig. 1., where Zﬁ, = 1.
i=1
The difference of information distribution coefficients
directly affects the filtering accuracy and fault
tolerance of the fusion system, so the determination
of the information distribution coefficients is the key

to use federated Kalman filter.

Information fusion structure of train speed measuring and positioning system

3 Adaptive adjustment of information
distribution coefficients

During the train running process, the information

distribution coefficients are dynamically adjusted
according to the measurement accuracy and reliability
of the sensor, which can further optimize the fusion

the the

between the filter results of the sub-filter and its

accuracy of system. Since relationship

associated state parameters is ambiguous, this paper
evaluates the sub-filter performance by using the
L213) and gives
then

fuzzy comprehensive evaluation method
the filtering confidence of each sub-filter,

dynamically adjusts the information distribution
coefficients.

This paper chooses ¢ (P;) and CH; (k) as
evaluation factors, where t7(P;) is the trace of sub-
filter” s which the
filtering effect of each sub-filter, and the smaller the
value, the better the filtering effect; CH, (k) is the

difference between the

error Covariance, represents

actual covariance and the

theoretical covariance of the innovation, which
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represents the prediction accuracy of each sub-filter,
and the smaller the value, the higher the prediction
accuracy. The output of system is the confidence of
sub-filter. The classification results are divided into 4
grades by using grade division method, namely R; =
{ excellent, good, general, poor }. Its specific
evaluation procedures are as follows.

1) Determining evaluation indexes and evaluation
levels, respectively, here are U;,={CH,,tr(P;)} and
R;. Determining the membership degree curve of
each evaluation index, and the triangular membership
function is adopted in this paper.

2) According to the membership function, the
comprehensive evaluation matrix of each sub-filter at

each sampling point can be obtained, here it is

R, R. R, R,

Ry R., R; Ry
where R,; and R; represent the evaluation grade of
CH and tr (P), respectively. The weight vector of
evaluation index is W=1[0. 5,0. 5]. Therefore, the

evaluation result of each sub-filter is

A, = WD, =
[Rn +R, R;+R, R;+R; R, +RM}
2 2 2 2 ’

3) In order to obtain the filter confidence at each
sampling point, the specific parameters of the
filtering level should be specified. The confidence
intervals of the filter results and the corresponding
parameter vectors are determined based on the
experience and simulation results, which are shown
in Table 2. The grade parameter column vector is
Z=1[0.95,0.8,0.5,0.05]". The evaluation result A,
is taken as the weight vector, then the filtering
confidence of the sub-filter is d,=A,Z.

Table 2 Filtering results classification

Filtering Filtering Confidence Grade
level effect interval parameter
Level 1 Excellent [0.9,1] 0.95
Level 2 Good [0.7,0.9] 0.8
Level 3 General [0.2,0.7] 0.5
Level 4 Poor [0,0.2] 0.05

4) The information distribution coefficient of each

Hdi » where d; € (0,1). According

2.
i=1

to the sub-filter filtering confidence value at each

sub-filter is 8 =

sampling point, we can query Table 2 and determine

the filter result level, so as to determine whether

adaptive filtering is necessary.

4 Covariance shaping adaptive filtering

During the train running process, since the
changes of the system environment, train traction
and other factors result in the changes of system
model parameters and measurement statistical
characteristics of the sensors, the filtering effect is
affected. When sub-filter is in the sub-optimal state,
adaptive filtering is needed to constantly adjust the
gain matrix to ensure the better filtering effect. This
paper introduces covariance shaping method and the

Frobenius norm minimization considered as the
147]

optimization index"'"", so as to obtain the adjustment
factor for the system’s residual variance and realize
the adaptive adjustment of the process noise and
measurement noise in sub-filter system. Thus the
algorithm can improve the matching degree between
the measured residual variance and the system
recursive residual, and enhance the (filtering
accuracy.

The residual error of sub-filter is
e (k) = H(WO[X.(H) —X,(B]+V, (k). (5)
The measurement residual variance of sub-filter is
Sk |k—1) = H, (P, (H! (k) + R, (k) (6)

where R; (k) is the measurement noise covariance of
the sensor.

The error covariance matrix can also be written as
PG| k—D=PG&|—D+aP: k| F—1, (D

where a is the adaptive adjustment factor.
The estimated residual covariance matrix of
Kalman filter can be obtained by Eqgs. (6) and (7),

namely
Sk |k—1)=H (RP! (k| k—1DH (k) +
H,(R)P! (k| k—1DH! (k) + R, (k), (8)
where
SICk | k—1) = H,(BP!(k | k—1H] (k) + R, (),
Sk k—1) =H,(haP! (k| k— 1D H] (k).

The measurement covariance matrix of the system

is obtained by

N
DHAZ G — N+1+D[6ZG*k—N+1+D]"}, (9)
i=1
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where N is the number of sampling points and @ is

the parameter to be optimized. The deviation

between the theoretical covariance and actual

min={J(@) = [|S,—[Sk | k—1) +8(|k—1]

where @0 is diagonal matrix. To minimize the cost

covariance of sub-filter is taken as the minimum cost
function, and it can be expressed in Frobenius norm

as

2, 10

function, its partial derivative is 0 and @ is

a = diag[(HP! (& | k—DH") (S, — Sk | k—1))]. D

Then, the adaptive factor is obtained according to
Eq. (11) to realize the adaptive matching between
theoretical residuals and actual residuals during the
train running and improve the filtering accuracy and

robustness of the system.

S Simulation and analysis
5.1 Establishment of train motion model

During the train running process, the acceleration

is variable. In this paper, considering non-zero
acceleration mean, the discretization equation of train
motion is obtained based on the current statistical

model, and the formula is

"1 T(—14+aT +eT) 0 ]
s(k) a’
o(k) | = 0 1 1—eT|X
a
(k)
LO 0 e
sC(B—1) 1 0 07 |w (k—1)

vlk—1D |+ 10 1 0| |w,(k—1)|, (12)

(k—D 0 0 1J|w,(F—1

where a is the correlation time constant of the train
acceleration”™ 3 s (k), v (k) and a (k) are the train
running  distance, speed and  acceleration,
respectively; T is the sampling period; w, (k) ,w, (k)
and w, (k) are the system noises that respectively
affect the train running distance, speed and
acceleration, and they are belong to zero-mean white
Gaussian noise, of which the standard deviations are
d,» 0, and &, , respectively.

Speed sensor sub-system: Its observation vector is
Z, (k) =1[s5s(k),v(k)]". The measurement noise is
Vi (k)=[W, W, ]", where w,, and w,, are the zero-
mean white Gussian noise, of which the standard
and &y,

deviations are 0, respectively.  Its

. L 1 0 O
observation matrix is H, = .
0O 1 0
Radar sub-system: Its observation vector is Z, (k)

=< (k). The measurement noise is V, (k) =W, ,

where W,, is the zero-mean white Gussian noise and
the standard deviation is 8,,. Its observation matrix is
H,=[0 1 0].

GPS sub-system: Its observation vector is Z; (k) =
[sCk),v(k)]". The measurement noise is V; (k) =
[W,,,W,, 1", where w,; and ws, are the zero-mean

noise, of which the

and 0,

white Gussian standard

deviations are 0, respectively.  Its

1 0 0
observation matrix is H; = .
0O 1 0

5.2 Simulation and analysis

In this paper, the integrated train positioning
system consisting of speed sensor, radar and GPS is
used as the platform, and the
Matlab 2016

environment. When adding the simulation noise, the

experimental
simulation is carried out in the
standard deviation of speed noise is §,=0.1 m/s, the
standard deviation of distance noise is §,=0.5 m and
the standard deviation of acceleration noise is 8, =
0.1 m/s*. The simulation related parameters are set
as follows: T=1 s, a=1, 8,=5 m, 6,,=1.5 m/s,
02,=1.1 m/s and 8;,=1 m/s. Then the measurement
noise variance matrix of speed sensor sub-system is
R, =[t",0;0,1.5%], the measurement noise variance
matrix of radar sub-system is R, =[0,1.1% ], and the
measurement noise variance matrix of the GPS sub-
system is R, = [ 47,030, 1% ]. In order to meet the
requirements of high-speed railway running speed.
the initial velocity is v, =50 m/s. The simulation
time is set at 200 s. The carrier moves at a speed of
50 m/s within 0—50s. In 50—100 s, the carrier
does varying accelerated motion, and the acceleration
is set at 3sin(¢#/5) m/s®, which is used to simulate
carrier does uniform

100—150 s, and the
At the same time, the

process changes.  The

accelerated movement in
acceleration is 1.5 m/s?.

observation noise covariance is increased by four
times of the initial value, which is used to simulate
the changes of measurement noise statistical
In 150—200 s,

variably accelerated motion and the observation noise

characteristics. the carrier does

covariance is increased by four times of the initial
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value, which is used to simulate the simultaneous
variation of observation noise and process at the same
time. The simulation experiments are carried out by
comparing the adaptive federated Kalman filter
proposed in this paper, the standard federated
Kalman filter and the improved Kalman filter
proposed in Ref. [6].
shown in Figs. 2 and 3.

The simulation results are

64 |~ — Federated Kalman filter
The paper algorithm

---------- Algorithm in Ref.[6]

Speed error (m/s)

0 25 50 75 100 125 150 175 200
1(s)

Fig. 2 Comparison of speed errors of three algorithms

20 -
— - — Federated Kalman filter v
. \ I
— The paper algorithm E b
104 [ Algorithm in Ref.[6] P ? i'
_ : L i
g |
=
s 0
E
o
[}
2
s -104
S
4
(@]
=20
-30 \ \ \

0 25 50 75 100 125 150 175 200
t(s)

Fig. 3 Comparison of distance errors of three algorithms

In Figs.2 and 3, as a comparison of the three
algorithms, the simulation results of speed error and
distance error are presented, respectively. It can be
seen that because the carrier is subject to uniform
motion in 0—50 s, the motion model and system
noise statistics are accurate, and the filtering effects
of the three algorithms are almost the same. But in
50—200 s, the carrier does the variably accelerated
motion firstly, as a result, the measurement noise
increases and the noise statistical characteristics are
changed, which results in the increase of distance
error and speed error. The filtering effect has
declined especially in 150—200 s. When the process

and measurement noise change at the same time, the

standard Kalman filter is very incapable meeting the
requirements of train speed measurement and
positioning. But the algorithm in this paper and the
algorithm in Ref.[6] still can track this kind of
change better and obtain the better filtering effect.
This is because the process noise and measurement
noise of the system in Ref.[6] are estimated and
modified in real time, which is able to improve the
filtering accuracy. In this paper, the system
automatically carries out adaptive filtering according
to the filtering effect. In point of residual
comparison, considering the error caused by the
changes of process noise and measurement noise, the
changes of the system can be better tracked. In
addition, the information distribution coefficients can
be adjusted adaptively in this paper and the relevant
information that returns to the sub-filter can be
adjusted dynamically, so as to improve the fusion
accuracy, whose filtering effect is better than that of
the algorithm in Ref.[6]. Therefore, the algorithm
proposed in this paper is suitable for multi-sensor
information  fusion, which can reduce the
measurement error and improve the measurement
accuracy of speed and distance. The Information

fusion structure is available.

6 Conclusions

After the simulation and comparative analysis, the
following conclusions are obtained.

1) This paper adopts GPS to assist speed sensor
and radar to realize combination speed measurement
and positioning, which can effectively eliminate
distance error accumulation, carry out distance
calibration in real time, and improve train self-
control capability.

2) This paper uses fuzzy comprehensive evaluation
method to evaluate the sub-filter, and the

information  distribution  coefficients can  be

dynamically adjusted according to the filtering
confidence, which can make the fusion system obtain
better filtering accuracy and improve fault tolerance.

3) This paper adopts covariance shaping adaptive
filtering method and minimizes the cost function,
which can simultaneously track the changes of
process noise and measurement noise. In addition,
the algorithm improves the matching degree of the
measured residual variance and recursive residual, so
as to optimize the filter and improve the information
fusion accuracy of the train speed and distance

significantly.
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