此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

An image dehazing method combining adaptive dual transmissions and scene depth variation

LIN Lei, YANG Yan

 

(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

 

Abstract: Aiming at the problems of imprecise transmission estimation and color cast in single image dehazing algorithms, an image dehazing method combining adaptive dual transmissions and scene depth variation is proposed. Firstly, a haze image is converted from RGB color space to Lab color space, morphological processing and filtering operation are performed on the luminance component, and the atmospheric light is estimated in combination with the maximum channel. Secondly, a Gaussian-logarithmic mapping of haze image is used to estimate the dark channel of haze-free image, and the bright channel of haze-free image is obtained by using the inequality relation of atmospheric scattering model. Thus, the dual transmissions are gotten. Finally, an adaptive transmission map with joint optimization of dual transmissions is constructed according to the relationship between depth map and transmission. A high-quality haze-free image can be directly recovered by using the proposed method with the atmospheric scattering model. The experiments show that the recovery results have natural color, thorough dehazing effect, rich detail information and high visual contrast. Meanwhile, good dehazing effects can be gotten in different scenes.

 

Key words: Lab color space; scene depth; function mapping; adaptive dual transmission; night image dehazing

 

References

 

[1]SHAO L, LIU L, LI X L. Feature learning for image classification via multi-objective genetic programming. IEEE Transactions on Neural Networks Learning Systems, 2014, 25(7): 1359-1371.
[2]HAN J W, ZHANG D W, CHANG G, et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(6): 3325-3337.
[3]CHEN Y, LI D, ZHANG J Q. Complementary color wavelet: A novel tool for the color image/video analysis and processing. IEEE Transactions on Circuits and Systems for Video Technology, 2019(1): 12-27.
[4]ZHANG J L, YANG Y. Single image dehazing based on hazy features extraction and enhancement network. Journal of Measurement Science and Instrumentation, 2023, 14(1): 45-54.
[5]CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[6]LI B Y, PENG X, WANG Z, et al. AOD-Net: All-in-one dehazing network//IEEE International Conference on Computer Vision (ICCV), Oct. 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 4780-4788.
[7]RENW Q, LIU S, ZHANG H, et al. Single image dehazing via multiscale convolution neural networks//Computer Vision: ECCV 2016, Oct. 8-16, 2016, Amsterdam, Netherlands. Berlin: Springer International Publishing, 2016: 154-169.
[8]LI R D, PAN J S, HE M, et al. Task-oriented network for image dehazing. IEEE Transactions on Image Processing, 2020, 29: 6523-6534.
[9]HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[10]WANG W C, YUAN X H, WU X J, et al. Fast image dehazing method based onlinear transformation. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155.
[11]YANG Y, ZHANG D X, YUE H. Image fusion dehzaing algorithm based on minimum channel and logarithmic attenuation. Journal of Beijing University of Aeronautics. 2020, 46(10): 1844-1852.
[12]YANG Y, WANG Z W. Haze removal: push DCP at the edge. IEEE Signal Processing Letters, 2020, 27: 1405-1409.
[13]ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 2015, 24(11):3522-3532.
[14]BI G L, REN J Y, FU T J, et al. Image dehazing based on accurate estimation of transmission in the atmospheric scattering model. IEEE Photonics Journal, 2017, 9(4): 17130356 .
[15]KUMARI A, SAHDEV S, SAHOO S K. Improved single image and video dehazing using morphological operation //International Conference on VLSI Systems, Jan. 8-10, 2015, Bengaluru, India. New York: IEEE, 2015: 14949886.
[16]DUAN B, LI J, CHEN H M, et al. New approach to dehaze single nighttime image. Journal of Northwestern Polytechnical University, 2021, 39(3): 604-610.
[17]SUN W H, WANG H, SUN C H, et al. Fast single image haze remove via local atmospheric light veil estimation. Computer & Electrical Engineering, 2015, 46: 371-383.
[18]LI B, WANG S H, ZHENG J, et al. Single image haze removal using content-adaptive dark channel and post enhancement. IET Computer Vision, 2014, 8(2): 131-140.
[19]GUO F, CAI Z X. Objective assessment method for the clearness effect of image defogging algorithm. Acta Automatica Sinica, 2012, 38(9): 1410-1419.
[20]MIN X K, ZHAI G T, GU K, et al. Objective quality evaluation of dehazed images. IEEE Transportation Systems, 2019, 20(8): 2879-2892.

 

结合自适应双透射率和景深变化的去雾方法

 

林雷, 杨燕

 

(兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070)

 

摘要:为了解决单幅图像去雾算法透射率估计不准确和复原结果偏色等问题, 提出一种结合景深变化的自适应双透射率去雾方法。 首先, 将有雾图像从RGB颜色空间转换到Lab颜色空间, 对亮度分量作形态学处理和滤波操作, 并结合最大值通道估计出大气光。 其次, 利用有雾图像的高斯-对数映射实现对无雾图像暗通道的估计, 并根据不等式关系得到无雾图像的亮通道, 然后估计出双透射率。 最后, 结合深度图与透射率之间的关系, 构建双透射率联合优化的自适应透射率函数, 并结合大气散射模型恢复出无雾图像。 实验表明, 所提方法复原结果颜色自然、 去雾彻底、 细节信息丰富, 且具有较高的视觉对比度。 同时, 在不同场景中均可获得较好的去雾效果, 有效解决了透射率估计不准确和偏色问题。

关键词:Lab颜色空间; 景深; 函数映射; 自适应双透射率; 夜间图像去雾

 

引用格式:LIN Lei, YANG Yan. An image dehazing method combining adaptive dual transmissions and scene depth variation. Journal of Measurement Science and Instrumentation, 2023, 14(4): 413-424. DOI: 10.3969/j.issn.1674-8042.2023.04.004

 

[full text view]