此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Application of sine cosine algorithm-support vector regression on temperature compensation of MEMS shear stress sensor

ZHANG Jia1, CHEN Yonglu2,  ZHANG Li3,  GONG Xiaoqing4

(1. School of Electronic Engineering, Xi’an Aeronautical University, Xi’an 710077, China;2. Chinese Flight Test Establishment, Xi’an 710089, China;3. Xi’an Yuanfang General Aviation Technology Development Co., Ltd., Xi’an 710089, China;4. Chinasoft International Technology Service Co., Ltd., Xi’an 710077, China)

 

Abstract: To solve the output signal drift of capacitive micro-electromechanical system (MEMS) shear stress sensor caused by the change of operation temperature, a sine cosine algorithm-support vector regression (SCA-SVR) for temperature compensation is proposed. The hyper-parameters of SVR are optimized based on the SCA. The proposed SCA-SVR temperature compensation algorithm is compared with the widely used partical swarm optimization-support vector regression (PSO-SVR) algorithm through experiments. The experimental results indicate that the temperature compensation algorithm based on the SCA-SVR can effectively compensate the output temperature drift of capacitive MEMS shear stress sensor. The correlation coefficient between the sensor output signal compensated by the SCA-SVR algorithm and the calibration value is increased to 0.999 6, and the root mean square error is reduced to 0.009 9 mV, which is smaller than the counterpart of PSO-SVR by an order of magnitude.


Key words: micro-electromechanical system (MEMS);  shear stress sensor;  temperature compensation; sine cosine algorithm (SCA);  support vector regression (SVR)

 

References

 

[1] DONG X S, HUANG Q W, XU W, et al. Research on temperature characteristic of parasitic capacitance in MEMS capacitive accelerometer. Sensors & Actuators: A. Physical, 2018, 285: 581-587.
[2] AKTAKKA E E, NAJAFI K, A six-axis micro platform for in situ calibration of MEMS inertial sensors//29th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 24-28, 2016, Shanghai, China. New York: IEEE,  2016: 243-246.
[3] MUTHARPAVALAR A, AHMED A Y, NOR N M, Design, modeling and simulation of MEMS resonator for humidity sensor application//IEEE Sensors Applications Symposium, Mar. 9-11, 2020, Kuala Lumpur, Malaysia. New York: IEEE, 2020: 1-6.
[4] LAZARUS N, BEDAIR S, LO C, et al. CMOS-MEMS capacitive humidity sensor. Journal of Microelectromechanical Systems, 2010, 19(1), 183-191.
[5] KANG R, LIU H F, WEI X L,  et al. A high-resolution area-change-based capacitive MEMS tilt sensor. Sensors and Actuators: A. Physical, 2020, 313: 112191.
[6] ZHAO L, YEATMAN E M. Micro capacitive tilt sensor for human body movement detection. IFMBE Proceedings, 2007, 13: 195-200.
[7] SHIRHATTI V, KEDAMBAIMOOLE V, NUTHALAPATI S, et al. High-range noise immune supersensitive graphene-electrolyte capacitive strain sensor for biomedical applications. Nanotechnology, 2019, 30(47): 475502.
[8] SUSTER M, GUO J, CHAIRMANONART N, et al. A high-performance MEMS capacitive strain sensing system. Journal of Microelectromechanical Systems, 2006, 15(5): 1069-1077.
[9] LI J G, LONGTIN J P, TANKIEWICZ S, et al. Interdigital capacitive strain gauges fabricated by direct-write thermal spray and ultrafast laser micromachining. Sensors & Actuators: A. Physical, 2006, 133(1): 1-8.
[10] ARAGHI G, LANDRY R J. Temperature compensation model of MEMS inertial sensors based on neural network//IEEE/ION Position, Location and Navigation Symposium, Apr. 23-26, 2018, Monterey, USA. New York: IEEE,  2018, 301-309.
[11] CUONG D, SESHIA A A. Active temperature compensation for MEMS capacitive sensor. IEEE Sensors Journal, 2021, 21(17): 18588-18592.
[12] FRAN C. ASM ready reference: thermal properties of metals. Novelty: ASM International, 2002.
[13] WATANABE H, YAMADA N, OKAJI M. Linear thermal expansion coefficient of silicon from 293 to 1 000 K. International Journal of Thermophysics, 2004, 25(1): 221-236.
[14] GUO W, Geng L, YAN W, et al. Application of least squares-support vector machine in system-level temperature compensation of ring laser gyroscope. Measurement, 2011, 44(10): 1898-1903.
[15] LI S K, LIU Y, LIU Y F, et al. MEMS gyroscope temperature drift compensation for SVR optimized by artificial bee colony//Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. Berlin:Springer, 2021.
[16] LI S, FANG H J, LIU X Y. Parameter optimization of support vector regression based on sine cosine algorithm. Expert Systems with Applications, 2018, 91: 63-77.
[17] AHMAD M S, ADNAN S M, ZAIDI S, et al. A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens. Construction and Building Materials, 2020, 248: 118475.
[18] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96: 120-133.
[19] LYU F, FAN X Y, DING F X, et al. Prediction of the axial compressive strength of circular concrete-filled steel tube columns using sine cosine algorithm-support vector regression. Composite Structures, 2021, 273: 114282.

 

正弦余弦算法支持向量回归在MEMS剪应力传感器温度补偿中的应用

张佳1, 陈永禄2, 张莉3, 宫小清4

(1. 西安航空学院 电子工程学院, 陕西 西安 710077; 2. 中国飞行试验研究院, 陕西 西安 710089; 3. 西安远方航空技术发展总公司, 陕西 西安 710089; 4. 中软国际科技服务有限公司, 陕西 西安 710077)

 

摘要:为解决电容式微机电系统(Micro-electromechanical system, MEMS)剪应力传感器输出信号随工作环境温度变化产生漂移的问题, 提出了基于正弦余弦算法的支持向量回归(Sine cosine algorithm-support vector regression, SCA-SVR)温度补偿算法。 首先, 利用SVR对传感器温漂进行补偿; 其次, 基于SCA对SVR的超参数进行优化; 最后, 将所提出的SCA-SVR温度补偿算法与广泛应用的粒子群支持向量回归(Partical swarm optimization-support vector regression, PSO-SVR)算法进行实物实验对比。 结果表明, 基于SCA-SVR的温度补偿算法能够有效地对电容式MEMS剪应力传感器的输出温漂进行补偿, SCA-SVR算法补偿后的传感器输出信号与整定值间的相关系数提高至0.999 6, 均方根误差降低至0.009 9 mV, 比PSO-SVR算法补偿后的结果降低了一个数量级。

 

关键词:微机电系统; 剪应力传感器; 温度补偿; 正弦余弦算法; 支持向量回归

 

引用格式:ZHANG Jia, CHEN Yonglu, ZHANG Li, et al. Application of sine cosine algorithm-support vector regression on temperature compensation of MEMS shear stress sensor. Journal of Measurement Science and Instrumentation, 2023, 14(3): 263-269. DOI: 10.3969/j.issn.1674-8042.2023.03.002

 

[full text view]