此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Bifurcation dynamics of Sherman neuron under magnetic flow

effectLI Tao, WU Kaijun, ZHENG Huan, YAN Mingjun

 

(School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070,  China)

 

Abstract: The bifurcation behavior of Sherman neuron system under the influence of magnetron memristor is analyzed. Taking the membrane potential reversal voltages VCa and VK of islet β-cell neuron model as bifurcation parameters, the inter-spike interval bifurcation diagram, time response diagram and phase plane diagram are used to analyze the bifurcation process. It can be found that with the change of parameters, the Sherman neuron system shows completely opposite firing rhythm. The overall performance is chaotic plus periodic cluster firing, multiple periodic cluster firing and periodic peak firing. In the process of periodic cluster firing, with the increase of the number of periods, the amplitude of the membrane potential decreases gradually, and the amplitude of the intra-cluster firing peak decreases more obviously.

 

Key words: neuron; memristor; bifurcation; firing rhythm

 

References

 

[1] HODGKIN A L, HUXLEY A. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiological Sciences, 1952, 117(4): 500-544.
[2] SHERMAN A, RINZEL J, KEIZER J. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophysical Journal, 1988, 54: 411-425.
[3] MOSEKILDE E, LADING B, YANCHUK S, et al. Bifurcation structure of a model of bursting pancreatic cells. BioSystems, 2001, 63: 3-13.
[4] WU K J, WANG D C, YU C, et al. Synchronization of chemical synaptic coupling of the chay neuron system under time delay. Applied Sciences, 2018, 8(6): 927-938.
[5] GU H G, YANG M H, LI L, et al. Noise induced multi-mode neural firings in a period adding bifurcation scenario. International Journal of Modern Physics B, 2003, 17: 4195-4200
[6] GU H G, PAN B B, CHEN G R, et al. Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dynamics, 2014, 78(1): 391-407.
[7] STORACE M, LINARO D, de LANGE E. The hindmarsh-rose neuron model:  bifurcation analysis and piecewise-linear approximations. Chaos, 2008, 18:  033128.
[8] RECH, PAULO C. Dynamics in the parameter space of a neuron model. Chinese Physics Letters, 2012, 29(6):  60506-60509.
[9] CHUA L. Memristor-The missing circuit element. IEEE Transations on Circuit Theory, 1971, 18: 507-519.
[10] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found. Nature, 2008, 453:  80-83.
[11] LI C B, THIO W J-C, LU H T-C, et al. A memristive chaotic oscillator with increasing amplitude and frequency. IEEE Access, 2018, 6: 12945 -12950.
[12] LI C, MIN F H, LI C B. Multiple coexisting attractors of the serial-parallel memristor-based chaotic system and its adaptive generalized synchronization. Nonlinear Dynamics, 2018, 94(4):  2785-2806.
[13] BAO B C, SHI G D, XU J P, et al. Dynamics analysis of chaotic circuit with two memristors. Science China-Technological Sciences, 2011, 54(8): 2180-2187.
[14] XU Q, LIN Y, BAO B C, et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua′s circuit. Chaos Solitons & Fractals, 2016, 83:  186- 200.
[15] ZHANG G, MA J, ALSAEDI A, et al. Dynamical behavior and application in Josephson Junction coupled by memristor. Applied Mathematics & Computation, 2018, 321:  290-299.
[16] MA J, LV M, ZHOU P, et al. Phase synchronization between two neurons induced by coupling of electromagnetic field. Applied Mathematics & Computation, 2017, 307: 321-328.
[17] XU Y, JIA Y, MA J, et al. Synchronization between neurons coupled by memristor. Chaos Solitons & Fractals, 2017, 104: 435- 442.
[18] REN G D, XU Y, WANG C N. Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dynamics, 2017, 88(2): 893-901.
[19] LV M, WANG C N, REN G D, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016, 85(3):  1479- 1490.
[20] YU H, XIAO H, SI F Y, et al. Electrical activity in chay neuronal model under magnetic flow effect. Biophysics, 2017, 5(1):  1-7.
[21] GE M Y, LU L L, XU Y, et al. Vibrational mono-/bi-resonance and wave propagation in FitzHugh-Nagumo neural systems under electromagnetic induction. Chaos Solitons & Fractals, 2020, 133: 109645.
[22] TAN A J, WEI D Q, ZHOU Q, et al. Phase synchronization and circuit implementation in neurons with electromagnetic field coupled memristor. Scientia Sinica Technological, 2020, 50(2):  175-182.
[23] RAJ N, RANJAN R K, KHATEB F. Flux-controlled memristor emulator and its experimental results. IEEE Transactions on Very Large Scale Integration System, 2020, 28(4): 1050-1061.
[24] FAN W W, WU H G, LI Z, et al. Synchronization and chimera in a multiplex network of Hindmarsh-Rose neuron map with flux-controlled memristor. European Physical Journal, 2022(22/23): 4131-4141.

 

磁流影响下的Sherman神经元分岔动力学特性

 

黎涛, 邬开俊, 郑欢, 闫明俊

 

(兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070)

 

摘要:对磁控忆阻器影响下的Sherman神经元系统的分岔行为进行分析。 分别选取胰岛β细胞神经元模型膜电位的反转电压VCa和VK作为分岔参数, 使用峰峰间期分岔图、 时间响应图以及相平面图对神经元系统分岔过程进行详细分析, 随着参数变化, 发现Sherman神经元系统表现出完全相反的放电节律。 整体表现为带有混沌的加周期簇放电、 倍周期簇放电以及倍周期峰放电。 在加周期簇放电过程中, 发现随周期数的增加, 神经元系统膜电位的放电振幅逐渐减小, 簇内放电尖峰的振幅值随着周期数增加降低更为明显。

 

关键词:神经元; 忆阻器; 分岔; 放电节律

 

引用格式:LI Tao, WU Kaijun, ZHENG Huan, et al. Bifurcation dynamics of Sherman neuron under magnetic flow effect. Journal of Measurement Science and Instrumentation, 2023, 14(3): 280-289. DOI: 10.3969/j.issn.1674-8042.2023.03.004

 

[full text view]