此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Vibration characteristics of axial piston pump based on phase trajectory diagram


HAO Zhenfu, GU Lichen, GENG Baolong, LIU Jiamin, YANG Sha

(School of Mechatronic Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

 

Abstract: Considering that the vibration of the piston pump shell includes not only motion state information, but also energy state information, this study discloses the relationship between the piston pump vibration signal and the operating state by the piston pump shell vibration phase trajectory. Firstly, the high pressure fluid excitation and the vibration speed, displacement, and vibration energy of the pump shell are related. This relationship can be set forth by analysis of the piston pump fluid vibration transmission path. Secondly, according to the vibration frequency traceability, multi-synchrosqueezing transform(MSST) method is used to reconstruct signal. After the integral transformation of the reconstructed signal, the information of vibration speed and displacement can be obtained further. Finally, the trajectory diagram of the shell vibration is constructed based on the vibration speed and displacement. The experiment under different operating conditions are carried out to expound the variation rules of the kinetic energy and potential energy of the piston pump contained in the phase trajectory diagram of the shell vibration. The results show that combined with vibration frequency traceability, MSST can accurately extract the vibration frequency and phase information of shell vibration acceleration signal caused by hydraulic excitation. The operating condition of piston pump has significant influence on kinetic energy and potential energy of piston pump shell. With the increase of system pressure, the distance between the phase trajectory and the vertical zero-shift axis, and the potential energy of the shell increase significantly. With the increase of speed, the maximum vibration speed of phase trajectory diagram and the kinetic energy of shell increase significantly. The phase trajectory diagram of axial piston pump can reflect the kinetic energy and potential energy of the shell more intuitively. This study can provide a theoretical basis and method support for the fault diagnosis and health assessment of key components such as hydraulic pumps, motors.

 

Key words: axial piston pump; vibration energy; multi-synchrosqueezing transform; phase trajectory diagram

 

References

 

[1] LIU J M, GU L C, SUN Y. A new method for high precision instantaneous speed measure of hydraulic system. Journal of Measurement Science and Instrumentation, 2019, 10(4): 307-314.
[2] GU L C, TIAN Q Q, MA Z W. Extraction of the instantaneous speed fluctuation based on normal time-frequency transform for hydraulic system//Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(6): 1196-1211.
[3] GU L C. Principle and method of kinetic energy stiffness of electro-hydraulic system. Beijing: Science Press.
[4] SHU S C, HAN D. Approach for a hydraulic pump’s feature extraction based on multiscale optimal fuzzy entropy. Journal of Vibration and Shock, 2016, 35(9): 184-189.
[5] ZHOU T Y, WANG C T, GU J et al. Analysis of displacement and vibration characteristics of stator of radial piston pump with constant pressure. Journal of Vibration and Shock.2009, 28 (7): 162-165.
[6] WANG S P, YUAN Z K, YANG G Q. Study on fault diagnosis of data fussion in hydraulic pump. China Mechanical Engineering, 2005(4): 47-51.
[7] HE Q F, CHEN G M, CHEN X H et al. Application of singular value and wavelet de-noising method in analyzing vibration signal of piston pump. Journal of Mechanical Strength, 2012, 34(4): 475-480.
[8] CHEN H, YUAN H D, ZHANG S W. Research on the condition assessment method of equipment based on vibration energy. Machinery Design & Manufacture, 2013(2): 127-130.
[9] WEI X L, CHAO Q, TAO J F. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 435-445.
[10] SUN J, LIN H R, WANG W G. Preprocessing algorithm for vibration signals of a hydraulic pump based upon WMUWD. Journal of Vibration and Shock, 2015, 34(21): 93-99.
[11] WANG Y K, LI H R, YE P. Fault feature extraction of hydraulic pump based on CNC de-noising and HHT. Journal of Failure Analysis and Prevention, 2015, 15(1): 139-151.
[12] AZADEH A, EBRAHIMIPOUR V, BAVAR P. Bavar. A fuzzy inference system for pump failure diagnosis to improve maintenance process: the case of a petrochemical industry. Expert Systems With Applications, 2009, 37(1): 627-639.
[13] LATAS W, STOJEK J. Dynamic model of axial piston swash-plate pump for diagnostics of wear in elements. Archive of Mechanical Engineering, 2011, LVIII(2): 135-155.
[14] YANG J, XU B, YANG H Y. Research progress on noise reduction of hydraulic axial piston pump. China Mechanical Engineering, 2003(7): 89-92.
[15] LUO X Y, QUAN L X, GUAN Q S, et al. Review of vibration of axial piston pump. Fluid Machinery, 2015, 43(8): 41-47.
[16] ZHAO J H, LIU H, WANG X W. Analysis on transfer path of fluid vibration of swash plate axial plunger pump under failure mode. Machine Tool & Hydraulics, 2020, 48(6): 1-9.
[17] ZHAO B J, GU L C, LIU J M. Analysis of pressure pulsation mechanism and dynamic characteristics of axial piston pump. Journal of Measurement Science and Instrumentation, 2022, 13(1): 21-30.
[18] YU G, WANG Z H, ZHAO P. Multi-synchrosqueezing Transform. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5445.
[19] WANG G M, CHEN S W, HUANG J. Radar emitter sorting and recognition based on multi-synchrosqueezing transform. Modern Radar, 2020, 42(3): 49-56.


基于相轨迹图的轴向柱塞泵振动特性研究

郝振甫,  谷立臣,  耿宝龙,  刘佳敏,  杨莎

(西安建筑科技大学 机电工程学院,  陕西 西安 710055)

 

摘要:考虑到柱塞泵壳体的振动既包含运动状态信息也包含能量状态信息,  提出采用柱塞泵壳体振动相轨迹图示化方法揭示柱塞泵振动信号与运行状态间的关系。 首先, 在分析柱塞泵流体振动传递路径,  阐明高压流体激励与泵壳体振动速度、 位移及振动能量之间的关系。 其次,  依据振动频率溯源结果,  采用多重同步压缩变换方法(Multi-synchrosqueezing Transform,  MSST)对柱塞泵壳体振动加速度信号进行重构,  经积分变换后可进一步得到振动速度和位移信息。 最后, 利用振动速度和位移信息构建壳体振动相轨迹图,  并通过实验揭示了不同工况下壳体振动相轨迹图中蕴含的柱塞泵动能、 势能变化规律。 结果表明, 结合振动溯源,  MSST能够准确提取壳体振动加速度信号中液压激励引起的振动频率和相位信息。 柱塞泵运行工况对柱塞泵壳体动能及势能有显著影响。 随系统压力增大,  相轨迹与垂直零位移轴的距离明显增大,  壳体势能显著增加; 随转速增加,  相轨迹图的最大振动速度明显增大,  壳体动能显著增加。 轴向柱塞泵相轨迹图可以更直观地显示壳体动能及势能变化规律。 本研究为液压泵、 马达等关键元件的故障诊断和健康评估提供了理论依据和方法支持。

 

关键词:轴向柱塞泵; 振动能量; 多重同步压缩变换; 相轨迹图

 

引用格式:HAO Zhenfu, GU Lichen, GENG Baolong, et al. Vibration characteristics of axial piston pump based on phase trajectory diagram. Journal of Measurement Science and Instrumentation, 2023, 14(3): 350-359. DOI: 10.3969/j.issn.1674-8042.2023.03.012

 

[full text view]