此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Multi-model adaptive PID control of variable speed pump-controlled hydraulic cylinder system

WU Haoyu, GU Lichen, GENG Baolong, LIU Jiamin, ZHAO Baojian, YANG Sha


(School of Mechatronic Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)


Abstract:  For variable speed pump-controlled hydraulic cylinder system, the nonlinear change of hydraulic system parameters is brought in by large-scale change of speed or load. It causes the control system, which is designed by the linear model, to have the problems such as difficult correction of control parameters, unstable precision or even control instability. In this paper, a multi-model adaptive PID (MMA-PID) control method is proposed by analyzing the state space of a typical variable speed pump-controlled hydraulic cylinder system. According to the nonlinear change of the bulk elastic modulus of oil caused by the change of the system pressure, the system behavior is described by using multiple linear sub-models. A reasonable controller is designed for each sub-model. During the control process, the output weight coefficient of each sub-model is estimated separately through the Kalman filter, and the weighted fusion of all the sub-models control output is used as the final control input of the system. The simulation and experimental results demonstrate that when the working conditions are vary widely, the MMA-PID can adapt to the nonlinear change of system parameters better than the traditional PID, and it owns better control effect and dynamic performance.


Key words: variable speed pump-controlled hydraulic cylinder; state space; nonlinear parameter; Kalman filter; multi-model adaptive PID (MMA-PID) 


References


[1]PASZOTA Z. Graphical presentation of the power of energy losses and power developed in the elements of hydrostatic drive and control system: Part II Rotational hydraulic motor speed parallel throttling control and volumetric control systems. Polish Maritime Research, 2008, 15(3): 28-37.

[2]JELALI M KROLL A. Hydraulic servo-systems: modeling, identification and control.Berlin: Springer Science & Business Media, 2012.

[3]LONG Q. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder. Chinese Journal of Mechanical Engineering, 2008, 44(11): 87-92.

[4]JIA Y F, GU L C. Constant pressure variable flow control system with permanent magnet synchronous motor driven fixed displacement pump. Hydraulics Pneumatics & Seals, 2014, 34(9): 42-44+76.

[5]ZHANG H J, QUAN L, LI B. Comparative study on energy efficiency of the electro-hydraulic control system in injection molding machine. Chinese Journal of Mechanical Engineering, 2012, 48(8): 180-187.

[6]MA Y, GU L C. Input feedforward-feedback compounded compensation control of variable speed hydraulic power supply. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 120-126.

[7]XU Y H, GU L C, MA Y. Research on fuzzy control method for constant flow of variable speed hydraulic power source. Machine Design Research, 2015(1): 102-105.

[8]ZHENG W, WANG H B, ZHANG Z M. Research on online identification of T-S fuzzy model for hydraulic servo system with pump controlled cylinder. Heavy Machinery, 2017, 9(6): 23-27.

[9]CHENG M, YU J, DING R Q, et al. Electrohydraulic load sensing system via compound control of flow feedforward and pressure feedback. Journal of Mechanical Engineering, 2018, 54(20): 262-270.

[10]LI Y Q, GU L C. YANG S. Hydraulic cylinder control of injection molding machine based on differential evolution fractional order PID. Journal of Measurement Science and Instrumentation, 2020, 11(4): 317-325.

[11]WANG X Y, GE P, SUN Y K. Control of FGC system based on multi-model adaptive control method. Journal of University of Science and Technology Beijing, 2004(1): 99-102.

[12]BALDI S, IOANNOU P, MOSCA E. Multiple model adaptive mixing control: the discrete-time case. IEEE Transactions on Automatic Control, 2012, 57(4): 1040-1045.

[13]ZHEN Y H, WANG Q, LI S Y. Multiple models direct adaptive decoupling controller for a stochastic system. Journal of Automatica Sinica, 2010, 36(9): 1295-1304.

[14]HASSANI V, PASCOAL A M, AGUIAR A P, et al. A multiple model adaptive wave filter for dynamic ship positioning. IFAC Proceedings Volumes, 2010, 43(20): 120-125.

[15]SUN W, LI X L, WANG W. Multiple model based adaptive minimum variance control of nonlinear system. Journal of Control Theory and Application, 2002(4): 639-643.

[16]SHAO P Z, FANG Y M, WANG W B, et al. Adaptive backstepping control of multi-model switching for the hydraulic servo position system of a rolling mill. Journal of University of Science and Technology Beijing, 2012, 34(11): 1346-1351.

[17]MURRENHOFF H, KIM S. Measurement of effective bulk modulus for hydraulic oil at low pressure. Journal of Fluids Engineering: Transactions of the ASME, 2012, 134(2): 021201.

[18]LI M, CHAI G Y. Application of Kalman filter in steer-by-wire system for loaders. Mining & Processing Equipment, 2012, 40(9): 46-48.

[19]LIU W Q. A simulation study of PID control based on kalman filter. China Equipment, 2009(8): 157-158.

[20]XIN W, LI S Y, WANG Z J. Hierarchicval multiple models adaptive decoupling controller applied to the wind tunnel system. IFAC Proceedings Volumes, 2005, 38(1): 145-150.


变转速泵控液压缸系统的多模型自适应PID控制


仵浩宇, 谷立臣, 耿宝龙, 刘佳敏, 赵宝建, 杨莎


(西安建筑科技大学 机电工程学院, 陕西 西安 710055)


摘要:变转速泵控液压缸系统转速或负载大范围变动导致的液压系统参量非线性变化, 可使基于线性模型设计的控制系统出现控制参数不合理、 精度不稳定, 甚至控制失稳等问题, 本文通过分析典型变转速泵控液压缸系统的状态空间, 提出了一种多模型自适应PID (Multi-model adaptive PID, MMA-PID)控制方法。 该方法根据系统压力的改变引起的油液体积弹性模量的非线性变化, 用多个线性子模型分别描述系统行为, 并针对每个子模型, 单独设计一个合理的控制器。 控制过程中, 通过卡尔曼滤波器分别估计各个子模型的输出权重系数, 并将所有子模型控制输出加权融合作为系统最终的控制输入。 仿真和实验结果表明, 在工况大范围变化时, 多模型自适应PID控制相较于传统的PID控制, 能更好的适应系统参量的非线性变化, 具有更好的控制效果和动态性能。


关键词:变转速泵控液压缸; 状态空间; 非线性参量; 卡尔曼滤波器; 多模型自适应PID


引用格式:WU Haoyu, GU Lichen, GENG Baolong, et al. Multi-model adaptive PID control of variable speed pump-controlled hydraulic cylinder system. Journal of Measurement Science and Instrumentation, 2023, 14(2): 209-217. DOI: 10.3969/j.issn.1674-8042.2023.02.010


[full text view]