此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

High-sensitivity silicon carbide optical MEMS accelerometer based on wavelength modulation system

HUANG Kun1,2, CHENG Lin2, QU Shuai2, LIU Yuxiang2, CUI Jiangong2, HE Xinhui2, HU Qin2

(1. Upgrading Office of Modern College of Humanities and Sciences, Shanxi Normal University, Linfen 041000, China;2. State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China)


Abstract: This paper reports a high-frequency silicon carbide (SiC) sensor that relies on dual-mode wavelength modulation and its application to optical microelectromechanical systems (MEMS).  Based on the properties of as well as SiC and the characteristics of dual-mode analysis, an optical MEMS sensor suitable for a high-frequency field is designed. In addition, the finite element analysis (FEA) method with ANSYS and the rigorous coupled wave analysis (RCWA) method are used. A comparison with other high-frequency sensors shows that the proposed sensor displays advantages with respect to properties such as a wide measurement range, high sensitivity, and almost zero cross-axis sensitivity. The proposed optical sensor provides an optical sensitivity (Δλ/Δa) of 2.247 7, a mechanical sensitivity of 0.155 nm/g and an almost zero cross-axis sensitivity in the entire operation measurement range. The first resonance frequency is 40.035 kHz, the linear measurement range is ±129.03 g, the sensitivity of the sensing system (Δλ/Δa) is 0.348 4 nm/g, and the working bandwidth is 35 kHz.


Key words: microelectromechanical system (MEMS); wavelength modulation; optical accelerometer


References


[1]FLEMING W J. Overview of automotive sensors. IEEE Sensors Journal, 2001, 1(4): 296-308.

[2]ACAR C, SCHOFIELD A R, TRUSOV A A, et al. Environmentally robust MEMES vibratory gyroscope for automotive applications. IEEE Sensor Journal, 2009, 9(12): 1895-1906. 

[3]JUDY J W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Materials and Structures, 2001, 10(6): 1115-1134.

[4]BOGUE R. Recent developments in MEMS sensors: A review of applications, markets and technologies. Sensor Review, 2013, 33(4): 300-304.

[5]QUAGLIARELLA L, SASANELLI N, CAVONE G, et al. Biomedical signal analysis by a low-cost accelerometer measurement system//IEEE Instrumentation and Measurement Technology Conference, Apr. 24-27, 2006, Sorrento, Italy. New York: IEEE, 2006: 2236-2239.

[6]TU R, WANG R, GET M, et al. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single frequency GPS and a MEMS accelerometer. Geophysical Research Letters, 2013, 40(15): 3825-3829.

[7]KHMELNITSKY M, BORTMAN J, TURET M, et al. Improved bearing sensing for prognostics: from vibrations to optical fibres. Insight: Non-Destructive Testing and Condition Monitoring, 2015, 57(8): 437-441.

[8]SAFIZADEH M S, GOLMOHAMMADI A. Ball bearing fault detection via multi-sensor data fusion with accelerometer and microphone. Insight: Non-Destructive Testing and Condition Monitoring, 2021, 63(3): 168-175.

[9]RAFAEL S, ROMERO A, GOODFELLOW G, et al. Detection of gearbox failures by combined acoustic emission and vibration sensing in rotating machinery.Insight: Non-Destructive Testing and Condition Monitoring, 2014, 56(8): 422-425.

[10]SOUA S, CEBULSKI L, BRIDGE B, et al. Online monitoring of a power slip-ring on the shaft of a wind power generator.  Insight: Non-Destructive Testing and Condition Monitoring, 2014, 53(6): 321-329.

[11]NAKANDHRAKUMAR R S, DINAKARAN D, GOPAL M, et al. A novel normalisation procedure for the sensor positioning problem in vibration monitoring of drilling using artificial neural networks. Insight: Non-Destructive Testing and Condition Monitoring, 2016, 58(10): 556-563.

[12]LAURILA J, LAHDELMA S. Advanced fault diagnosis by means of complex order derivatives. Insight: Non-Destructive Testing and Condition Monitoring, 2014, 56(8): 439-442.

[13]MCGETRICK P J, GONZALEZ A, OBRIEN E J,  et al. Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters. Insight: Non-Destructive Testing and Condition Monitoring, 2009, 51(8): 433-438.

[14]ALBARBAR A, GU F, BALL A, et al. Internal combustion engine lubricating oil condition monitoring based on vibro-acoustic measurements. Insight: Non-Destructive Testing and Condition Monitoring, 2007, 49(12): 715-718.

[15]BROATCH A, TORMOS B, OLMEDA P, et al. A contribution to the diagnosis of internal combustion engines through rolling block oscillations. Insight: Non-Destructive Testing and Condition Monitoring, 2008, 50(11): 637-641.

[16]ROY A L, SARKAR H, DUTTA A, et al. A high precision SOI MEMS-CMOS ±4 piezoresistive accelerometer. Sensors and Actuators A: Physical, 2014, 210: 77-85.

[17]XU Y, ZHAO L B, DING J J, et al. Analysis and design of a novel piezoresistive accelerometer with axially stressed self-supporting sensing beams. Sensors and Actuators A: Physical, 2016, 247: 1-11.

[18]LEVINZON F A. Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier. IEEE Sensors Journal, 2012, 12(6): 2262-2268.

[19]STADIGADAPA S, MATETI K. Piezoelectric MEMS sensors: state-of-the art and perspectives. Measurement Science and Technology, 2009, 20(9): 092001.

[20]MISTRY K K, SWAMY K B, SEN S, et al. Design of an SOI-MEMS high resolution capacitive type single axis accelerometer. Microsystem Technologies, 2010, 16(12): 2057-2066.

[21]EDALATFAR F, YAGHOOTKAR B, AZIMI S, et al. Development of a micromachined accelerometer for particle acceleration detection. Sensors and Actuators A: Physical, 2018, 280: 359-367.

[22]UTZ A, WALK C, STANITZKI A, et al. A high-precision and high-bandwidth MEMS-based capacitive accelerometer. IEEE Sensors Journal, 2018, 18(16): 6533-6539.

[23]HE J, ZHOU W, HU H, et al. Structural designing of a MEMS capacitive accelerometer for low temperature coeffificient and high linearity. Sensors, 2018, 18(2): 643.

[24]ROCKSTAD H K, REYNOLDS J K, TANG T K, et al. A miniature, high-sensitivity, electron tunneling accelerometer. Sensors and Actuators A: Physical, 1996, 53: 227-231.

[25]HUANG K, CAO L Q, ZHAI P C, et al. High sensitivity system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Optics Communications, 2020, 470: 125392.

[26]AHMADIAN M, JAFARI K. A graphene-based wide-band MEMS accelerometer sensor dependent on wavelength modulation. IEEE Sensors Journal, 2019, 19(15): 6226-6232.

[27]SHEIKHALEH A, ABEDI K, JAFARI K, et al. A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal. Journal of Lightwave Technology, 2016, 34(22): 5244-5249.

[28]ASGRI S, GRANPAYEH N. Tunable plasmonically induced reflection in graphene-coupled side resonators and its application. Journal of Nanophotonics, 2017, 11(2): 026012. 

[29] KRISHNAMOORTHYA U, OLSSON III R H, BOGART G R, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sensors and Actuators A: Physical, 2008, 145: 283-290.

[30]SHEIKHALEH A, ABEDI K, JAFARI K, et al. Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal. Applied Optics, 2016, 55(32): 8993-8999.

[31]SHEIKHALEH A, JAFARI K, ABEDI K, et al. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system. IEEE Sensors Journal, 2018, 19(1): 144-150.

[32]SAURABH A, MISHRA JITENDRA K, PRIYE V, et al. Highly sensitive MOEMS integrated photonic crystal cavity reasonator for nano-mechanical sensing. Optics Communications, 2020, 474: 126108.

[33]HUANG K, NIE Y L, LIU Y X, et al. A proposal for a high-sensitivity optical MEMS accelerometer with double-mode modulation system. Journal of Lightwave Technology, 2021, 39: 303-309.

[34]HUANG K, NIE Y L, YANG J P, et al. A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation System. IEEE Sensors Journal, 2020, 20: 14639-14645.

[35]HUANG K, YU M, CHEN L, et al. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. Journal of Lightwave Technology, 2019, 37: 5474-5478.

[36]MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America A, 1986, 3: 1780.

[37]GHOLAMZADEH R, JAFARI K, CHAROONI M, et al. Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes. Journal of Micromechanics and Microengineering, 2016, 27(1): 015022.

[38]MABOUDIAN R, CARRAO C. Advances in silicon carbide science and technology at the micro and nanoscales. Journal of Vacuum Science & Technology A, 2013, 31(5): 050805.

[39]DI G, WIJESUNDARA M B J, CARRARO C, et al. Transformer coupled plasma etching of 3C-SiC films using flourinated chemistry for micro eletro mechanical system applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(2): 513-528.

[40]SENESKY D G, PISANO A P. Aliminum nitried as a masking material for the plasma etching of silicon carbide structures//IEEE 23rd International Conference on Micro Electro Mechanical Systems, Jan. 24-28. 2010, Hong Kong, China. New York: IEEE, 2010: 352-355.

[41]ZHAO F, LSLAM M M, HUANG C F, et al. Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Materials Letters, 2011, 65(3): 409-412.

[42]SHI Y B, SUN Y N, LIU J, et al. UV nanosecond laser machining and characterization for SiC MEMS sensor application. Sensors and Actuators A: Physical, 2018, 276: 196-204.


基于波长调制系统的高灵敏度碳化硅光学MEMS加速度计


黄堃1,2 , 程林2, 曲帅2, 刘驭湘2, 崔建功2, 贺鑫慧2, 胡琴2

(1. 山西师范大学 现代文理学院转设筹备处, 山西 临汾 041000; 2. 中北大学 省部共建动态测试技术国家重点实验室,  山西 太原 030051)


摘要:本文报道了一种基于双模波长调制的高频碳化硅(Silicon carbide, SiC)传感器及其在并光学微机电系统(Microelectromechanical systems, MEMS)中应用。 基于碳化硅材料属性及双模分析, 设计了一种适用于高频场的光学MEMS传感器, 并利用ANSYS有限元分析(Finite element analysis, FEA)方法和严格耦合波分析(Rigorous coupled wave analysis, RCWA)方法, 将其与其他高频传感器进行性能比较。 结果表明, 该光学传感器在整个操作测量范围内可提供2.247 7(Δλ/Δa)的光学灵敏度、 0.155 nm/g的机械灵敏度和几乎为零的交叉轴灵敏度, 且第一谐振频率为40.035 kHz, 线性测量范围为±129.03 g, 传感系统灵敏度(Δλ/Δa)为0.348 4 nm/g, 工作带宽为35 kHz。


关键词:微机电系统; 波长调制; 光学加速度计


引用格式:HUANG Kun, CHENG Lin, QU Shuai, et al. High-sensitivity silicon carbide optical MEMS accelerometer based on wavelength modulation system. Journal of Measurement Science and Instrumentation, 2023, 14(1): 116-126. DOI: 10.3969/j.issn.1674-8042.2023.01.014


[full text view]