HUANG Kun1,2, CHENG Lin2, QU Shuai2, LIU Yuxiang2, CUI Jiangong2, HE Xinhui2, HU Qin2
(1. Upgrading Office of Modern College of Humanities and Sciences, Shanxi Normal University, Linfen 041000, China;2. State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China)
Abstract: This paper reports a high-frequency silicon carbide (SiC) sensor that relies on dual-mode wavelength modulation and its application to optical microelectromechanical systems (MEMS). Based on the properties of as well as SiC and the characteristics of dual-mode analysis, an optical MEMS sensor suitable for a high-frequency field is designed. In addition, the finite element analysis (FEA) method with ANSYS and the rigorous coupled wave analysis (RCWA) method are used. A comparison with other high-frequency sensors shows that the proposed sensor displays advantages with respect to properties such as a wide measurement range, high sensitivity, and almost zero cross-axis sensitivity. The proposed optical sensor provides an optical sensitivity (Δλ/Δa) of 2.247 7, a mechanical sensitivity of 0.155 nm/g and an almost zero cross-axis sensitivity in the entire operation measurement range. The first resonance frequency is 40.035 kHz, the linear measurement range is ±129.03 g, the sensitivity of the sensing system (Δλ/Δa) is 0.348 4 nm/g, and the working bandwidth is 35 kHz.
Key words: microelectromechanical system (MEMS); wavelength modulation; optical accelerometer
References
[1]FLEMING W J. Overview of automotive sensors. IEEE Sensors Journal, 2001, 1(4): 296-308.
[2]ACAR C, SCHOFIELD A R, TRUSOV A A, et al. Environmentally robust MEMES vibratory gyroscope for automotive applications. IEEE Sensor Journal, 2009, 9(12): 1895-1906.
[3]JUDY J W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Materials and Structures, 2001, 10(6): 1115-1134.
[4]BOGUE R. Recent developments in MEMS sensors: A review of applications, markets and technologies. Sensor Review, 2013, 33(4): 300-304.
[5]QUAGLIARELLA L, SASANELLI N, CAVONE G, et al. Biomedical signal analysis by a low-cost accelerometer measurement system//IEEE Instrumentation and Measurement Technology Conference, Apr. 24-27, 2006, Sorrento, Italy. New York: IEEE, 2006: 2236-2239.
[6]TU R, WANG R, GET M, et al. Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single frequency GPS and a MEMS accelerometer. Geophysical Research Letters, 2013, 40(15): 3825-3829.
[7]KHMELNITSKY M, BORTMAN J, TURET M, et al. Improved bearing sensing for prognostics: from vibrations to optical fibres. Insight: Non-Destructive Testing and Condition Monitoring, 2015, 57(8): 437-441.
[8]SAFIZADEH M S, GOLMOHAMMADI A. Ball bearing fault detection via multi-sensor data fusion with accelerometer and microphone. Insight: Non-Destructive Testing and Condition Monitoring, 2021, 63(3): 168-175.
[9]RAFAEL S, ROMERO A, GOODFELLOW G, et al. Detection of gearbox failures by combined acoustic emission and vibration sensing in rotating machinery.Insight: Non-Destructive Testing and Condition Monitoring, 2014, 56(8): 422-425.
[10]SOUA S, CEBULSKI L, BRIDGE B, et al. Online monitoring of a power slip-ring on the shaft of a wind power generator. Insight: Non-Destructive Testing and Condition Monitoring, 2014, 53(6): 321-329.
[11]NAKANDHRAKUMAR R S, DINAKARAN D, GOPAL M, et al. A novel normalisation procedure for the sensor positioning problem in vibration monitoring of drilling using artificial neural networks. Insight: Non-Destructive Testing and Condition Monitoring, 2016, 58(10): 556-563.
[12]LAURILA J, LAHDELMA S. Advanced fault diagnosis by means of complex order derivatives. Insight: Non-Destructive Testing and Condition Monitoring, 2014, 56(8): 439-442.
[13]MCGETRICK P J, GONZALEZ A, OBRIEN E J, et al. Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters. Insight: Non-Destructive Testing and Condition Monitoring, 2009, 51(8): 433-438.
[14]ALBARBAR A, GU F, BALL A, et al. Internal combustion engine lubricating oil condition monitoring based on vibro-acoustic measurements. Insight: Non-Destructive Testing and Condition Monitoring, 2007, 49(12): 715-718.
[15]BROATCH A, TORMOS B, OLMEDA P, et al. A contribution to the diagnosis of internal combustion engines through rolling block oscillations. Insight: Non-Destructive Testing and Condition Monitoring, 2008, 50(11): 637-641.
[16]ROY A L, SARKAR H, DUTTA A, et al. A high precision SOI MEMS-CMOS ±4 piezoresistive accelerometer. Sensors and Actuators A: Physical, 2014, 210: 77-85.
[17]XU Y, ZHAO L B, DING J J, et al. Analysis and design of a novel piezoresistive accelerometer with axially stressed self-supporting sensing beams. Sensors and Actuators A: Physical, 2016, 247: 1-11.
[18]LEVINZON F A. Ultra-low-noise seismic piezoelectric accelerometer with integral FET amplifier. IEEE Sensors Journal, 2012, 12(6): 2262-2268.
[19]STADIGADAPA S, MATETI K. Piezoelectric MEMS sensors: state-of-the art and perspectives. Measurement Science and Technology, 2009, 20(9): 092001.
[20]MISTRY K K, SWAMY K B, SEN S, et al. Design of an SOI-MEMS high resolution capacitive type single axis accelerometer. Microsystem Technologies, 2010, 16(12): 2057-2066.
[21]EDALATFAR F, YAGHOOTKAR B, AZIMI S, et al. Development of a micromachined accelerometer for particle acceleration detection. Sensors and Actuators A: Physical, 2018, 280: 359-367.
[22]UTZ A, WALK C, STANITZKI A, et al. A high-precision and high-bandwidth MEMS-based capacitive accelerometer. IEEE Sensors Journal, 2018, 18(16): 6533-6539.
[23]HE J, ZHOU W, HU H, et al. Structural designing of a MEMS capacitive accelerometer for low temperature coeffificient and high linearity. Sensors, 2018, 18(2): 643.
[24]ROCKSTAD H K, REYNOLDS J K, TANG T K, et al. A miniature, high-sensitivity, electron tunneling accelerometer. Sensors and Actuators A: Physical, 1996, 53: 227-231.
[25]HUANG K, CAO L Q, ZHAI P C, et al. High sensitivity system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Optics Communications, 2020, 470: 125392.
[26]AHMADIAN M, JAFARI K. A graphene-based wide-band MEMS accelerometer sensor dependent on wavelength modulation. IEEE Sensors Journal, 2019, 19(15): 6226-6232.
[27]SHEIKHALEH A, ABEDI K, JAFARI K, et al. A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal. Journal of Lightwave Technology, 2016, 34(22): 5244-5249.
[28]ASGRI S, GRANPAYEH N. Tunable plasmonically induced reflection in graphene-coupled side resonators and its application. Journal of Nanophotonics, 2017, 11(2): 026012.
[29] KRISHNAMOORTHYA U, OLSSON III R H, BOGART G R, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sensors and Actuators A: Physical, 2008, 145: 283-290.
[30]SHEIKHALEH A, ABEDI K, JAFARI K, et al. Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal. Applied Optics, 2016, 55(32): 8993-8999.
[31]SHEIKHALEH A, JAFARI K, ABEDI K, et al. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system. IEEE Sensors Journal, 2018, 19(1): 144-150.
[32]SAURABH A, MISHRA JITENDRA K, PRIYE V, et al. Highly sensitive MOEMS integrated photonic crystal cavity reasonator for nano-mechanical sensing. Optics Communications, 2020, 474: 126108.
[33]HUANG K, NIE Y L, LIU Y X, et al. A proposal for a high-sensitivity optical MEMS accelerometer with double-mode modulation system. Journal of Lightwave Technology, 2021, 39: 303-309.
[34]HUANG K, NIE Y L, YANG J P, et al. A proposal to enhance high-frequency optical MEMS accelerometer sensitivity based on a one-dimensional photonic crystal wavelength modulation System. IEEE Sensors Journal, 2020, 20: 14639-14645.
[35]HUANG K, YU M, CHEN L, et al. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. Journal of Lightwave Technology, 2019, 37: 5474-5478.
[36]MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America A, 1986, 3: 1780.
[37]GHOLAMZADEH R, JAFARI K, CHAROONI M, et al. Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes. Journal of Micromechanics and Microengineering, 2016, 27(1): 015022.
[38]MABOUDIAN R, CARRAO C. Advances in silicon carbide science and technology at the micro and nanoscales. Journal of Vacuum Science & Technology A, 2013, 31(5): 050805.
[39]DI G, WIJESUNDARA M B J, CARRARO C, et al. Transformer coupled plasma etching of 3C-SiC films using flourinated chemistry for micro eletro mechanical system applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(2): 513-528.
[40]SENESKY D G, PISANO A P. Aliminum nitried as a masking material for the plasma etching of silicon carbide structures//IEEE 23rd International Conference on Micro Electro Mechanical Systems, Jan. 24-28. 2010, Hong Kong, China. New York: IEEE, 2010: 352-355.
[41]ZHAO F, LSLAM M M, HUANG C F, et al. Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Materials Letters, 2011, 65(3): 409-412.
[42]SHI Y B, SUN Y N, LIU J, et al. UV nanosecond laser machining and characterization for SiC MEMS sensor application. Sensors and Actuators A: Physical, 2018, 276: 196-204.
基于波长调制系统的高灵敏度碳化硅光学MEMS加速度计
黄堃1,2 , 程林2, 曲帅2, 刘驭湘2, 崔建功2, 贺鑫慧2, 胡琴2
(1. 山西师范大学 现代文理学院转设筹备处, 山西 临汾 041000; 2. 中北大学 省部共建动态测试技术国家重点实验室, 山西 太原 030051)
摘要:本文报道了一种基于双模波长调制的高频碳化硅(Silicon carbide, SiC)传感器及其在并光学微机电系统(Microelectromechanical systems, MEMS)中应用。 基于碳化硅材料属性及双模分析, 设计了一种适用于高频场的光学MEMS传感器, 并利用ANSYS有限元分析(Finite element analysis, FEA)方法和严格耦合波分析(Rigorous coupled wave analysis, RCWA)方法, 将其与其他高频传感器进行性能比较。 结果表明, 该光学传感器在整个操作测量范围内可提供2.247 7(Δλ/Δa)的光学灵敏度、 0.155 nm/g的机械灵敏度和几乎为零的交叉轴灵敏度, 且第一谐振频率为40.035 kHz, 线性测量范围为±129.03 g, 传感系统灵敏度(Δλ/Δa)为0.348 4 nm/g, 工作带宽为35 kHz。
关键词:微机电系统; 波长调制; 光学加速度计
引用格式:HUANG Kun, CHENG Lin, QU Shuai, et al. High-sensitivity silicon carbide optical MEMS accelerometer based on wavelength modulation system. Journal of Measurement Science and Instrumentation, 2023, 14(1): 116-126. DOI: 10.3969/j.issn.1674-8042.2023.01.014
[full text view]