此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

High-gain microstrip patch antenna with conformal metamaterials based on topological transformation

YANG Tingqi1,2, TIAN Xiaoli2 , LOU Wenzhong1, HE Bo1, FENG Hengzhen1

(1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China)


Abstract: Microstrip patch antennas are widely used in various communication, telemetry and detection systems because of small size, light weight, low profile, simple fabrication, low cost and easy integration. However, microstrip patch antennas suffer from the disadvantage of low directive gain. In this paper, a high gain microstrip patch antenna with loading conformal metamaterials has been presented. A square split-ring resonator (SRR) is topologically transformed into a topological SRR which conforms to the cylindrical substrate and gives the metamaterials effect to suppress surface wave of the antenna. The conventional circular microstrip patch antenna resonates at 10 GHz, and the gain is 6.12 dBi. The near-field parameters of the antenna with loading 10 topological SRR unit cells keep good, and the gain is 7.88 dBi which is an increase of nearly 2 dBi compared to the conventional one.


Key words: microstrip patch antenna; split-ring resonator (SRR); conformal metamaterials; topological transformation; gain


References


[1]RAVAL F, KOSTA Y P, JOSHI H. Reduced size patch antenna using complementary split ring resonator as defected ground plane. AEU-International Journal of Electronics and Communications, 2015, 69(8): 1126-1133. 

[2]CARVER K, MINK J. Microstrip antenna technology. IEEE Transactions on Antennas and Propagation, 2003, 29(1): 2-24.

[3]ELEFTHERIADES G V, BALMAIN K G. Negative-refraction metamaterials: fundamental principles and applications. New Jersey: Wiley-IEEE Press, 2005.

[4]MUNK B. Metamaterials: Critique and Alternatives. New Jersey: John Wiley Press, 2009.

[5]PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2081.

[6]SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79.

[7]VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[8]NELATURI S, VENKATA N P. A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications. Journal of Electromagnetic Engineering and Science, 2018, 18(3): 182-187.

[9]LAILA D, SUJITH R, SHAMEENA V A, et al. Complementary split ring resonator-based microstrip antenna for compact wireless applications. Microwave and Optical Technology Letters, 2013, 55(4): 814-816.

[10]AL-NUAIMI M K T, HONG W, ZHANG Y. Design of high-directivity compact-size conical horn nens antenna. IEEE Antennas & Wireless Propagation Letters, 2014, 13: 467-470.

[11]SINGH D K, KANAUJIA B K, DWARI S, et al. Complementary split ring resonator based compact wideband microstrip antenna with tunable bands. Wireless Personal Communications, 2015, 80(2): 635-645.

[12]VARAMINI G, KESHTKAR A, NASER-MOGHADASI M. Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communication, 2018, 83: 213-221.

[13]CAI T, WANG G M, LIANG J G. A novel dual-band high-gain and high-directivity microstrip patch antenna based on zero-index metamaterial. Journal of Microwaves, 2014, 30(4): 40-44.

[14]LI D Y, SZABO Z, QING X M, et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Transactions on Antennas & Propagation, 2012, 60(12): 6018-6023.

[15]LIU Z, WANG P, ZENG Z. Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate. IEEE Antennas & Wireless Propagation Letters, 2013, 12: 429-432.

[16]GAO X J, TONG C, LI Z. Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial. AEU-International Journal of Electronics and Communications, 2016, 70(7): 880-885.

[17]VALAYIL M, CHAMBERLIN K. Enhancement of parameters of slotted waveguide antennas using metamaterials. Applied Computational Electromagnetics Society Journal, 2019, 34(2): 272-279.

[18]ZHAO X P. A simple linear-type negative permittivity metamaterials substrate microstrip patch antenna. Materials, 2021, 14(16): 4398.

[19]SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(3): 036617.

[20]STUTZMAN W L, THIELE G A. Antenna theory and design. New Jersey: John Wiley Press, 1998.


基于拓扑变换的共形超材料高增益微带贴片天线


杨庭琪1,2, 田晓丽2, 娄文忠1, 何博1, 冯恒振1

(1. 北京理工大学 机电学院, 北京 100081; 2. 中北大学 机电工程学院, 山西 太原 030051)


摘要:微带贴片天线具有体积小、 重量轻、 剖面低、 成本低、 易于集成等优点, 被广泛应用于各种通信、 遥测和探测系统中。 但是, 微带贴片天线也存在定向增益低的缺点。 为此, 提出了一种加载共形超材料的高增益微带贴片天线。 将方形开环谐振器(Split-ring resonator, SRR)拓扑变换为符合圆形衬底的SRR单元, SRR赋予抑制天线表面波的超材料效应。 仿真结果表明, 初始的圆形微带贴片天线的谐振频率为10 GHz, 增益为6.12 dBi。 加载10个拓扑SRR单元的天线的近场参数保持良好, 远场增益为7.88 dBi, 比初始天线增加了近2 dBi。 


关键词:微带贴片天线; 开环谐振器; 共形超材料; 拓扑变换; 增益


引用格式:YANG Tingqi, TIAN Xiaoli, LOU Wenzhong, et al. High-gain microstrip patch antenna with conformal metamaterials based on topological transformation. Journal of Measurement Science and Instrumentation, 2023, 14(1): 103-107. DOI: 10.3969/j.issn.1674-8042.2023.01.012


[full text view]