YAN Jun1,2
(1. Publishing Center, North University of China, Taiyuan 030051, China; 2. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China)
Abstract: Lithium metal batteries (LMBs), as the most promising next-generation high energy density storage devices, are capable of meeting the requirements of emerging industries. However, serious lithium dendrite growth, low Coulombic efficiency and unstable cathode material structure limit their commercial applications. As one of the most important components of LMBs, separator affects the rate performance, cycle life and safety of the LMBs to a great extent. Separator coating can improve LMBs’ performance by optimizing interfaces between the separator and the anode or the cathode. This review summarizes the recent progress of polymer separator coating from three aspects, and puts forward the future development directions of the separator.
Key words: lithium metal batteries (LMBs); separator coating; Coulombic efficiency; lithium dendrites
References
[1]DUFFNER F, KRONEMEYER N, TUEBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123-134.
[2]XIAO J, LI Q, BI Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5(8): 561-568.
[3]BABU G, AJAYAN P M. Good riddance, dendrites. Nature Energy, 2019, 4(8): 631-632.
[4]SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? Advanced Energy Materials, 2021, 11(10): 2003416.
[5]JIN R, FU L, ZHOU H, et al. High Li+ ionic flux separator enhancing cycling stability of lithium metal anode. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 2961-2968.
[6]BOATENG B, ZHANG X, ZHEN C, et al. Recent advances in separator engineering for effective dendrite suppression of Li-metal anodes. Nano Select, 2021, 2(6): 993-1010.
[7]QIAN J, ADAMS B D, ZHENG J, et al. Anode-free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26(39): 7094-7102.
[8]REN X, CHEN S, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem, 2018, 4(8): 1877-1892.
[9]ZHANG S S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 2012, 70: 344-348.
[10]JIN D, PARK J, DZAKPASU C B, et al. Effect of vinylene carbonate as an electrolyte additive on the electrochemical properties of micro-patterned lithium metal anode. Journal of the Korean Electrochemical Society, 2019, 22(2): 69-78.
[11]SHIN H, PARK J, SASTRY A M, et al. Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures. Journal of the Electrochemical Society, 2015, 162(9): A1683-A1692.
[12]FAN H, ZHENG Z, ZHAO L, et al. Extending cycle life of Mg/S Battery by activation of Mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism. Advanced Functional Materials, 2019, 30(9): 1909370.
[13]NAN Y, LI S, LI B, et al. An artificial TiO2/lithium n-butoxide hybrid SEI layer with facilitated lithium-ion transportation ability for stable lithium anodes. Nanoscale, 2019, 11(5): 2194-2201.
[14]WANG L, ZHANG L, WANG Q, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018, 10: 16-23.
[15]ZHU B, JIN Y, HU X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Advanced Materials, 2017, 29(2): 1603755.
[16]LIU K, PEI A, LEE H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer. Journal of the American Chemical Society, 2017, 139(13): 4815-4820.
[17]GAO Z, ZHANG S, HUANG Z, et al. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chinese Chemical Letters, 2019, 30(2): 525-528.
[18]LI Q, ZHU S, LU Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Advanced Functional Materials, 2017, 27(18): 1606422.
[19]PAN Y, CHOU S, LIU H K, et al. Functional membrane separators for next-generation high-energy rechargeable batteries. National Science Review, 2017, 4(6): 917-933.
[20]NESTLER T, ROEDERN E, UVAROV N F, et al. Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives. Physical Sciences Reviews, 2019, 4(4): 20170115.
[21]DU Q C, YANG M T, YANG J K, et al. Bendable network built with ultralong silica nanowires as a stable separator for high-safety and high-power lithium-metal batteries. ACS Applied Materials & Interfaces, 2019, 11(38): 34895-34903.
[22]SONG Y, YUAN J, YIN X, et al. Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries. Journal of Electroanalytical Chemistry, 2018, 816: 68-74.
[23]LUO W, ZHOU L H, FU K, et al. A thermally conductive separator for stable Li metal anodes. Nano Letters, 2015, 15(9): 6149-6154.
[24]LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators. Nature Energy, 2019, 4(1): 16-25.
[25]CHENG X, ZHANG R, ZHAO C, et al. Toward safe lithium metal anode in rechargeable batteries: A review. Chemical Reviews, 2017, 117(15): 10403-10473.
[26]ZHANG T, YANG J, XU Z, et al. Suppressing dendrite growth of a lithium metal anode by modifying conventional polypropylene separators with a composite layer. ACS Applied Energy Materials, 2019, 3(1): 506-513.
[27]HU Z, LIU F, GAO J, et al. Dendrite-free lithium plating induced by in situ transferring protection layer from separator. Advanced Functional Materials, 2020, 30: 1907020.
[28]GUO Y, NIU P, LIU Y, et al. An autotransferable g-C3N4Li+-modulating layer toward stable lithium anodes. Advanced Materials, 2019, 31(27): 1900342.
[29]LIU K, ZHUO D, LEE H W, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Advanced Materials, 2017, 29(4): 1603987.
[30]LIU Y, XIONG S, WANG J, et al. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials, 2019, 19: 24-30.
[31]LIU M, DENG N, JU J, et al. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes. ACS Applied Materials & Interfaces, 2019, 11(19): 17843-17852.
[32]LI C, LIU S, SHI C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nature Communications, 2019, 10(1): 1363.
[33]HAN D, WANG X, ZHOU Y N, et al. A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling. Advanced Energy Materials, 2022, 12(25): 2201190.
[34]SHI Q, ZHONG Y, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): 5676-5680.
[35]XING L, LIU Y, PAN Y, et al. Functional SrF2 Coated separator enabling robust and dendrite-free solid electrolyte interphase on lithium metal anode. Journal of Materials Chemistry A, 2019, 7: 21349-21361.
[36]WHITTINGHAM M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271-4301.
[37]YANG L, TAKAHASHI M, WANG B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochimica Acta, 2006, 51(16): 3228-3234.
[38]SHILINA Y, MADDUKURI S, BANERJEE A, et al. LNMO-graphite cells performance enhancement by the use of acid scavenging separators. Chemelectrochem, 2019, 6(14): 3690-3698.
[39]ZHANG X, WANG X, LI B, et al. Crosstalk shielding of transition metal ions for long cycling lithium-metal batteries. Journal of Materials Chemistry A, 2020, 8(8): 4283-4289.
[40]BANERJEE A, ZIV B, SHILINA Y, et al. Acid-scavenging separators: A novel route for improving Li-ion batteries’ durability. ACS Energy Letters, 2017, 2(10): 2388-2393.
[41]ZHANG M, LIU K, GAN Y, et al. Boosting the temperature adaptability of lithium metal batteries via a moisture/acid-purified, ion-diffusion accelerated separator. Advanced Energy Materials, https://doi.org/ 10.1002/aenm.202201390.
[42]SU D, ZHOU D, WANG C, et al. Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives. Advanced Functional Materials, 2018, 28(38): 1800154.
[43]XU Z L, LIN S, ONOFRIO N, et al. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9: 4164.
[44]WU J, ZENG H, LI X, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. Advanced Energy Materials, 2018, 8(35): 1802430.
[45]KIM P J H, SEO J, FU K, et al. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Materials, 2017, 9(4): e375.
[46]WANG J, YI S, LIU J, et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano, 2020, 14(8): 9819-9831.
锂金属电池隔膜涂覆的研究进展
闫俊1,2
(1. 中北大学 出版中心, 山西 太原 030051; 2. 北京师范大学 化学学院 能量转换与存储材料北京市重点实验室, 北京 100875)
摘要:锂金属电池(LMBs)是最具潜力的下一代高能量密度存储设备, 能够满足新兴产业的需求。 然而, 严重的锂枝晶生长、 较低的库仑效率和不稳定的正极材料结构限制了它的商业应用。 隔膜是LMBs最重要的组成部分之一, 在很大程度上影响着电池的倍率性能、 循环寿命和安全性。 对隔膜表面进行涂覆可以优化其与电极材料之间的界面, 从而提高LMBs性能。 本文从三个方面综述了近年来聚合物隔膜涂覆的研究进展, 并展望了隔膜未来的发展方向。
关键词:锂金属电池(LMBs); 隔膜涂覆; 库伦效率; 锂枝晶
引用格式:YAN Jun. Separator coating for lithium metal batteries: a review. Journal of Measurement Science and Instrumentation, 2023, 14(1): 95-102. DOI: 10.3969/j.issn.1674-8042.2023.01.011
[full text view]