此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Strongly robust model predictive current control with PMSM parameters mismatch


ZHAO Jun, WANG Xiaopeng, YAN Zichun, CHAI Hailong

(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract: Considering the declined control performance caused by mismatch of model parameters in model prediction current control (MPCC) of permanent magnet synchronous motor (PMSM), a PMSM strongly robust two-vector MPCC which was based on internal model control (IMC) was proposed. First, a PMSM two-vector MPCC model was established under the synchronous rotating coordinate system, where the system parameters disturbance was introduced into motor voltage equation. Second, system disturbance was estimated by designed d-axis and q-axis current IMC observer based on the state feedback theoretical. Finally, the estimation system disturbance of observer was introduced into motor voltage equation which contains the parameters disturbance term, so as to provide real-time compensation for two-vector MPCC algorithm and achieve non-steady state error control over current loop. The simulation results suggest that the proposed design can avoid the static error and oscillation due to parameters mismatch and reduce the rotation speed steady error and torque ripple, thus enabling steady operation of PMSM control system at the time of parameters mismatch and improving the robustness of the system. 


Key words: permanent magnet synchronous motor (PMSM); model predictive current control (MPCC); internal mode control (IMC); mismatch parameters


References


[1]ATHAVALE A, SASAKI K, GAGAS B S, et al. Variable flux permanent magnet synchronous machine (VF-PMSM) design methodologies to meet electric vehicle traction requirements with reduced losses. IEEE Transactions on Industry Applications, 2017, 53(5): 4318-4326.

[2]SHI T N, ZHANG W, XIAO M, et al. Predictive current control for permanent magnet synchronous motor based on operating time of fector. Transactions of China Electrotechnical Society, 2017, 32(19): 1-10.

[3]WANG D W, LI C J, WU Y, et al. Research on model predictive current control scheme for permanent magnet synchronous motor. Transactions of China Electrotechnical Society, 2014, 29(S1): 73-79.

[4]TENG Q F, LUO W D. Model predictive current control for three-level inverter driven PMSM based on fractional sliding mode speed observer. Journal of Measurement Science and Instrumentation, 2020, 11(4): 358-364.

[5]XU Y P, ZHANG B C, ZHOU Q. Two-vector based model predictive current control for permanent magnet synchronous motor. Transactions of China Electrotechnical Society, 2017, 32(20): 222-230.

[6]TU Z, ZHAO Y, YU J J, et al. Two-vector-based model predictive current control of permanent magnet synchronous motor. Engineering Journal of Wuhan University, 2020, 53(8): 721-727.

[7]QIN Y Z, YAN Y, CHEN W,et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives with parameters error compensation. Transactions of China Electrotechnical Society, 2020, 35(2): 45-55.

[8]UNDERWOOD S J, HUSAIN I. Online parameters estimation and adaptive control of permanent-magnet synchronous machines. IEEE Transactions on Industrial Electronics, 2010, 57(7): 2435-2443.

[9]SHI T N, LIU H, CHEN W, et al. Parameters identification of surface permanent magnet Synchronous machines considering voltage-source inverter nonlinearity. Transactions of China Electrotechnical Society, 2017, 32(7): 77-83.

[10]ZHANG X G, ZHANG Y C. Model predictive current control for PMSM drives with parameters robustness improvement. IEEE Transactions on Power Electronics, 2019, 34(2): 1645-1657. 

[11]ZHANG R, LUO G, TU W, et al. Grey control strategy of predictive current for PMSM//IEEE 11th Conference on Industrial Electronics and Applications, Jun. 05-07,  Hefei, China. New York: IEEE, 2016,  11: 2386-2390.

[12]TENG Q F, JIN Y X, LI S G, et al. Model predictive current control for PMSM systems driven by a three-phase four-switch inverter based on a MRAS observer. Information and Control, 2017, 46(2): 165-171.

[13]ZHAO K H, CHEN Y, ZHANG C F, et al. Reconstruction of demagnetization fault of six-phase permanent magnet synchronous motor based on super-twisting sliding-mode observe. Journal of Electronic Measurement and Instrument, 2019, 33(7): 79-87.

[14]XUE F, CHU J H, WEI H F. PWM predictive current control of permanent magnet synchronous motor based on luenberger disturbance observer. Electric Machines and Control Application, 2017, 44(11): 1-5.

[15]YIN Z G, BAI C, DU C, et al. Deadbeat predictive current control for permanent magnet Linear synchronous motor based on internal model disturbance observer. Journal of Electrical Technology 2018, 33(24): 5741-5750.

[16]HUANG Y, XIONG S. IMC-based current observer for PMSM. Electronics Letters, 2015, 51(25): 2100-2102.

[17]WANG L J, ZHAO J W, DONG F, et al.  High-bandwidth and strong robust predictive current control strategy research for permanent-magnet synchronous linear motor based on adaptive internal model observer. Proceedings of the CSEE, 2019, 39(10): 3098-3107.

[18]HUANG Y W, XIONG S H. An internal model control-based observer for current loops in permanent magnet synchronous motor. Proceedings of the CSEE, 2016, 36(11): 3070-3075.PMSM


参数失配的强鲁棒模型预测电流控制

赵军, 王小鹏, 闫子春, 柴海珑

(兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070)


摘要:针对永磁同步电机(Permanent magnet synchronous motor, PMSM)模型预测电流控制(Model prediction current control, MPCC)中因模型参数失配造成的控制性能下降问题, 提出一种基于内模控制(Internal model control, IMC)观测器的PMSM强鲁棒双矢量MPCC。 首先, 在同步旋转坐标系下搭建PMSM双矢量MPCC模型, 将系统参数扰动引入到电机电压方程。 其次, 根据状态反馈理论设计d、 q轴电流IMC观测器来估计系统扰动。 最后, 将观测器估计系统扰动引入到含参数扰动项的电机电压方程中, 为双矢量MPCC算法提供实时补偿, 实现对电流环的无稳态误差控制。 仿真结果表明, 所提出的设计方法避免了参数失配导致的电流静差及振荡问题, 减小了转速稳态误差及转矩脉动,  可以使PMSM控制系统在参数失配时稳定运行, 提高了系统的鲁棒性能。 


关键词:永磁同步电机; 模型预测电流控制; 内模控制; 失配参数


引用格式:ZHAO Jun, WANG Xiaopeng, YAN Zichun,  et al. Strongly robust model predictive current control with PMSM parameters mismatch. Journal of Measurement Science and Instrumentation, 2023, 14(1): 66-73. DOI: 10.3969/j.issn.1674-8042.2023.01.008


[full text view]