SHENG Wangqun1, LI Gang2, LI Yanzhe2, LI Baoxue3, ZHAO Shanpeng2
(1. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an 710000, China;2. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;3. China Railway Lanzhou Group Co., Ltd., Jiayuguan Power Feed Section, Jiayuguan 735100, China)
Abstract: The installed porcelain insulators on existing railway lines in China are prone to “snow flash” in winter. In order to prevent the occurrence of “snow flash” and improve the reliability of the insulators, a composite-porcelain insulator is designed. A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics. Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition, the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed. The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4% and 13.8%, respectively, lower than that of porcelain insulators in vertical and horizontal wind snow covers, which can effectively reduce the degree of electric field distortion. The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0% higher than that of the porcelain insulator, and the collision coefficient of the trunk and the fittings are lower 20.2% and 11.9% than that of the porcelain insulator. There is almost no change in the distribution coefficient of the insulator sheds.
Key words: porcelain cantilever insulator; snow flash; snow crystal deposition; electric field characteristics; simulation
References
[1]ZHANG H Y, MENG L, DAI X C. Analysis of extreme weather conditions and study of railway’s coping strategies. China Railway, 2019(5): 12-16.
[2]XIONG M Q. Climate regionalization and characteristics of surface winds over China in recent 30 years. Plateau Meteorology, 2015, 34(1): 39-49
[3]ZHANG R B, LI J C, WANG L M, et al. Flashover characteristics of snow-covered post insulators in substations. High Voltage Engineering, 2016, 42(12): 3823-3829.
[4]MEI H W, SHI Q L, LU M, et al. Flashover characteristics of 110 kV snow-covered post insulators. High Voltage Engineering, 2018, 44(12): 3944-3950.
[5]BYCHKOV P N, ZABRODINA I K, SHLAPAK V S. Insulation contamination of overhead transmission lines by extreme service conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 288-293.
[6]HAO Y P, XIONG G K, LIU Q, et al. Optimization of shed parameters of polluted DC post composite insulators based on finite element method. Proceedings of the CSEE, 2013, 33(22): 183-190.
[7]GU Y, YANG L, ZHANG F Z, et al. DC pollution flashover performance of ultra high voltage convert stations large-size composite post insulators at high altitude areas. Transactions of China Electrotechnical Society, 2016, 31(10): 93-101.
[8]ZHANG F Z, WANG L M, GUAN Z C, et al. Influence of composite insulator shed design on contamination flashover performance at high altitudes. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 739-744.
[9]YANG Z F, LIU S H, ZHANG H B. Introduction of a new type insulator for Catenary Cantilever in the electrified railway. Power Safety Technology, 2014, 16(9): 60-64.
[10]LI L C, WANG Z H, LIAO Y F, et al. Shed parameter optimization of large-diameter composite post insulators under wet condition based on electric field simulation. High Voltage Engineering, 2017, 43(6): 1930-1936.
[11]WANG C, LI W D, YANG X, et al. A comprehensive strategy for electric field regulation of GIS/GIL spacer by using structure and dielectric distribution optimization. Proceedings of the CSEE, 2020, 16(9): 60-64.
[12]SUN J X, XU Y, HU X Y, et al. Characteristics of pollution distribution on insulators nearby electrified railroad in high-speed aerosol. High Voltage Engineering, 2014, 40(1): 96-101.
[13]LI Y Z, LU J. Study of application of adding extra large shed to top of composite insulators. Power System Technology, 2006, 30(12): 102-105.
[14]JIANG Q Y, YAN M Y, ZHOU Z Y, et al. Numerical simulations and optimal design of composite insulator with extra large sheds under heavy icing condition. Power System Technology, 2015, 39(7): 2064-2068.
[15]ALE-EMRAN S M, FARZANEH M. Parametric studies and improved hypothesis of booster-shed effects on post insulators under heavy icing conditions. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 420-427.
[16]ALE-EMRAN S M, FARZANEH M. Dimensioning of booster sheds for icing protection of post station insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(6): 2576-2583.
[17]WANG L M, LIU T, MEI H W, et al. Research on contamination deposition characteristics of post insulator based on computational fluid dynamics. High Voltage Engineering, 2015, 41(8): 2741-2749.
[18]WIECK H, GUTMAN I, OHNSTAD T. Investigation of flashover performance of a snow-covered breakers. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(6): 1339-1346.
复合护套改进瓷腕臂绝缘子风雪环境下雪晶沉积和电场特性的综合仿真
盛望群1, 李刚2 , 李彦哲2, 李宝学3, 赵珊鹏2
(1. 中铁第一勘察设计院集团有限公司, 陕西 西安 710000; 2. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070;3. 中国铁路兰州局集团有限公司 嘉峪关供电段, 甘肃 嘉峪关 735100)
摘要:中国铁路线路已安装的瓷绝缘子冬季易出现“雪闪”问题, 为预防“雪闪”以提高绝缘子可靠性, 设计了一种腕臂复合瓷绝缘子。 本文基于电磁场理论和计算流体动力学的数值模拟方法, 搭建多物理场耦合仿真模型, 以绝缘子表面平均电场强度作为电场畸变程度特征参数, 雪晶碰撞系数和分布系数作为雪晶沉积特性特征参数, 分析不同积雪厚度、 风速和风向下的电场和沉积特性。 仿真结果表明: 在垂直和水平积雪下, 复合瓷绝缘子的平均电场强度比瓷绝缘子分别低10.4%和13.8%, 可有效降低电场畸变程度。 复合瓷绝缘子伞裙表面雪晶碰撞系数比瓷绝缘子碰撞系数提高了16.0%, 杆部和金具碰撞系数分别下降了20.2%和11.9%, 绝缘子伞裙分布系数几乎无变化。
关键词:瓷腕臂绝缘子; 雪闪; 雪晶沉积; 电场特性; 仿真
引用格式:SHENG Wangqun, LI Gang, LI Yanzhe, et al. Comprehensive simulation of snow crystal deposition and electric field characteristics of composite sheath improved porcelain cantilever insulator in a wind and snow environment. Journal of Measurement Science and Instrumentation, 2022, 13(4): 379-389. DOI: 10.3969/j.issn.1674-8042.2022.04.001
[full text view]