YU Caizhi, LU Yutai, WANG Peng, SUN Changku
(State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China)
Abstract: Environmental micro-vibration is one of the key factors impacting the running of electronic workshop. Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment, and even causes irreversible damage to the equipment. Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop. Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm, and its applicability is verified. At the same time, taking the testing project of an electronic workshop raw land as an example, the micro-vibration response is analyzed. The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better. Compared with the traditional equivalent linearization method, the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value. It can effectively suppress the “virtual resonance effect” produced by the equivalent linearization method.
Key words: micro-vibration response; nonlinear dynamic constitutive model; whale optimization algorithm; electronic workshop raw land
References
[1]GAO G Y, LI J, ZHANG B, et al. Measurement and analysis of environmental vibration of electronic industrial building. Journal of Guilin University of Technology, 2012, 32(3): 88-92.
[2]WANG Y N, CHEN C J. Simulation of small-aperture deep hole drilling based on ABAQUS. Journal of Measurement Science and Instrumentation, 2015, 6(3): 296-301.
[3]GAO G Y, ZHONG W, MENG Y, et al. Micro-vibration test and numerical simulation analysis of precision instrument workshop. Journal of Engineering Geology, 2020, 28(5): 1076-1083.
[4]LIU J H. Seismic response analysis of earth-rock dam based on equivalent linear model. Technical Supervision in Water Resources, 2022(1): 152-155.
[5]WANG Y C, CHEN Q J. Parameter fitting and application of Davidenkov model in soft soil site based on particle swarm optimization algorithm. Journal of Vibration and Shock, 2019, 38(17): 8-16.
[6]FEI K, PENG J. Detailed explanation of ABAQUS geotechnical engineering examples. Beijing: Posts and Telecommunications Press, 2017.
[7]HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils design equations and curves. Journal of Soil Mechanics and Foundation Division, 1972, 98(7): 603-642.
[8]MARTIN P P, SEED H B. One dimensional dynamic ground response analysis. Journal of Geotechnical Engineering, 1982, 108(7): 935-954.
[9]CHEN G X, LIU X Z, ZHU D H, et al. Dynamic shear test of newly deposited soil in the south of Yangtze River, Jiangsu Province. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 745-750.
[10]MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51-67.
[11]MA Y J, GONG Y, CHEN M. Target tracking based on normalized cross-correlation matching algorithm and Kalman predictor. Laser & Optoelectronics Progress, 2020, 57(18): 241-248.
[12]L Y J, TANG R Y, SHA H J. Experimental study on dynamic shear modulus ratio and damping ratio of seabed soil in Bohai Sea. Journal of Disaster Prevention and Mitigation Engineering, 2003, 7(2): 36-42.
[13]SHI B X, ZHANG L F, LU Y J. Study on geodynamic parameters of Tianjin Binhai field. Technology for Earthquake Disaster Prevention, 2010, 9(3): 288-297.
[14]ZHANG X P, NIU X, ZHAO A S, et al. Preliminary study on soil dynamic parameters in Dalian area. Earthquake Research in China, 2011, 27(3): 280-289.
[15]LI J K, WANG Y, YANG C Y, et al. Seismic response of underground composite tunnel based on equivalent linear viscoelastic model of soil. Journal of Catastrophology, 2021, 4(3): 64-70.
[16]GU Y, LIU J B, DU Y X. Three-dimensional uniform viscoelastic artificial boundary and equivalent viscoelastic boundary element. Engineering Mechanics, 2007(12): 31-37.
基于鲸鱼群优化算法的电子厂房素地微振动响应分析及应用研究
余才志, 卢煜泰, 王鹏, 孙长库
(天津大学 精密测量技术与仪器国家重点实验室, 天津 300072)
摘要:环境微振动是影响电子工业厂房正常运行的关键因素之一, 特别是低频微振动对高精密加工和检测设备的正常工作有着显著影响, 甚至会对设备造成不可逆损伤。 因此, 微振测试及响应分析对指导厂房隔振设计和保证厂房内各种精密设备稳定运行具有重要意义。 本文基于鲸鱼群优化算法对Davidenkov模型的参数进行拟合, 并验证了其适用性。 以某电子厂房素地为例, 对其微振动响应进行了分析。 结果表明, 经鲸鱼群优化算法拟合后所构建的土体非线性本构模型, 能够较好地描述在微振动作用下土体的动力非线性行为。 相比于传统的等效线性化方法, 基于鲸鱼群优化算法所构建的非线性本构模型所得到的加速度响应值更小, 可有效地抑制等效线性化方法所产生的“虚(拟)共振效应”。
关键词:微振动响应; 非线性动力本构模型; 鲸鱼群优化算法; 电子厂房素地
引用格式:YU Caizhi, LU Yutai, WANG Peng, et al. Micro-vibration response analysis and its application of electronic workshop raw land based on whale optimization algorithm. Journal of Measurement Science and Instrumentation, 2022, 13(4): 390-397. DOI: 10.3969/j.issn.1674-8042.2022.04.002
[full text view]