此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Predictive direct power control of three-phase PWM rectifier based on TOGI grid voltage sensor free algorithm


ZHAO Feng1, LI Shute1, CHEN Xiaoqiang1,2, WANG Ying1,2, GAN Yanqi1, NIU Xinqiang1, ZHANG Fan1



(1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Key Lab of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract: In predictive direct power control (PDPC) system of three-phase pulse width modulation (PWM) rectifier, grid voltage sensor makes the whole system more complex and costly. Therefore, third-order generalized integrator (TOGI) is used to generate orthogonal signals with the same frequency to estimate the grid voltage. In addition, in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy, a power correction link is designed to correct the power reference value. The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform. Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage. The effectiveness of the proposed method is verified by comparing the simulation results.


Key words: three-phase PWM rectifier;  predictive direct power control; grid voltage sensor free algorithm;  third-order generalized integrator; power correction



References


[1]HE S M, XIONG J, DAI D Y, et al. Modeling, control and stability analysis of three-phase voltage source PWM rectifier. Power System Technology, 2019, 43(6): 2049-2057.

[2]KULIKOWSKI K, SIKORSKI A. New DPC look-up table methods for three-level AC/DC converter. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7930-7938.

[3]ZHANG Z, FANG H, GAO F, et al. Multiple-vector model predictive power control for grid-tied wind turbine system with enhanced steady-state control performance. IEEE Transactions on Industrial Electronics, 2017: 6287-6298.

[4]LI H, LIN M Y, YIN M, et al. Three-vector-based low-complexity model predictive direct power control strategy for PWM rectifier without voltage sensors. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 240-251.

[5]ZHANG H, ZHU X, SHI J, et al. Study on PWM rectifier without grid voltage sensor based on virtual flux delay compensation algorithm. IEEE Transactions on Power Electronics, 2019, 34(1): 849-862.

[6]LI B, LI L C. A novel flux linkage algorithm for vector rotation in synchronous rotating coordinate system. Proceedings of the CSEE, 2016, 36(5): 1421-1429.

[7]NORNIELLA J G, CANO J M, ORCAJO G A, et al. Improving the dynamics of virtual-flux-based control of three-phase active rectifiers. IEEE Transactions on Industrial Electronics, 2014, 61(1): 177-187.

[8]LI H, MEI C L, LIN M Y, et al. Deadbeat predictive direct power control of a novel three-phase voltage source PWM rectifier. Power System Technology, 2021, 45(2): 689-695.

[9]MERZOUK I, KHANSA B, BENDAAS M L. Finite set model predictive control of PWM AC/DC converter with virtual-flux estimation under grid imbalance. Majlesi Journal of Electrical Engineering, 2019, 13(2): 111-119.

[10]YANG C W, WANG J, YOU X J, et al. Comparison of digital implementation accuracy of second-order generalized integrator frequency locked loop. Transactions of China Electrotechnical Society, 2019, 34(12): 2584-2596.

[11]ZHANG C J, ZHAO X J, GUO Z N, et al. Comparison and analysis of three improved structures of second-order generalized integrator and their PLL applications. Transactions of China Electrotechnical Society,  2017, 32 (22): 42-49.

[12]SHI W T. Improved deadbeat power predictive control of PWM rectifier without grid voltage sensor. Xi’an: Xi’an University of technology, 2019.

[13]HUANG Y, LUO A, CHEN Y D, et al. A multi inverter parallel control strategy based on third-order generalized integral cross cancellation current feedback control. Proceedings of the CSEE, 2014, 34(28): 4855-4864.

[14]LU Z G, LIN Y, HU L K, et al. Control method of novel three-phase PWM rectifier without AC voltage sensor. Electric Power Automation Equipment, 2017, 37(5): 28-33, 47.

[15]XIE X T. Research on three phase PWM rectifier based on improved direct power control. Changsha: Central South University, 2013.

[16]TAO C Y. Research on three phase voltage source PWM rectifier based on direct power control. Harbin: Harbin Institute of Technology, 2017.

[17]YE H Z, JIANG Y, HUANG S D, et al. Deadbeat predictive direct power control of voltage source PWM rectifier. Transactions of China Electrotechnical Society, 2015, 30(4): 121-128.

[18]LUO D R, ZHOU X Y, JI X H, et al. Model predictive direct power control of PWM rectifier based on virtual flux linkage. Electric Power Automation Equipment, 2017, 37(12): 123-129.


基于TOGI无网压传感器的三相PWM整流器预测直接功率控制


赵峰1, 李述特1, 陈小强1,2, 王英1,2, 甘延奇1, 牛鑫强1, 张帆1


(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070)


摘要:在三相脉冲宽度调制(PWM)整流器预测直接功率控制(PDPC)系统中, 网压传感器使整个系统变得更复杂, 且耗费成本较高。 本文采用三阶广义积分器(TOGI)产生同频率的正交信号, 以估算电网电压。 另外, 针对三相PWM整流器传统PDPC策略中实际功率与参考功率之间存在的偏差问题, 设计功率校正环节对功率参考值进行修正。 将基于TOGI的无网压传感器算法与功率修正后的PDPC策略应用于三相PWM整流器中, 并在仿真平台进行仿真。 仿真结果表明, 该方法能有效消除功率跟踪偏差, 准确估算电网电压。

关键词:三相PWM整流器; 预测直接功率控制; 无网压传感器算法; 三阶广义积分器; 功率校正


引用格式:ZHAO Feng, LI Shute, CHEN Xiaoqiang, et al. Predictive direct power control of three-phase PWM rectifier based on TOGI grid voltage sensor free algorithm. Journal of Measurement Science and Instrumentation, 2022, 13(4): 451-459. DOI: 10.3969/j.issn.1674-8042.2022.04.008



[full text view]