WU Xiaojun, WEN Binhua, TONG Xin, ZHANG Ying
(School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)
Abstract: A manufacturing method is proposed for carbon based composite double polymer compliant electrode. The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625. Tensile machine is used to test its ductility and hardness. The conductivity is measured through the source table. Finally, it is printed on the dielectric elastomers (DE) film, and the high-voltage amplifier is used for dielectric elastomers actuators (DEAs) dynamics testing. The results show that the compliant electrode has high tensile properties (>200%), low stiffness (<300 kPa) and well conductivity (0.049 3 S/cm). It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response, which is 1.64 times and 1.32 times of the same type. Moreover, this formula extends the curing time of the original compliant electrode ink. It can provide a reference for the production of compliant electrode and DEAs in the future.
Key words: dielectric elastomer actuators (DEA); carbon-based composite double polymer compliant electrode; stiffness;conductivity
References
[1]PELRINE R, KORNBLUH R, PEI Q, et al. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454): 836-839.
[2]GU G Y, JIAN Z, ZHU L M, et al. A survey on dielectric elastomer actuators for soft robots. Bioinspiration & Biomimetics, 2017, 12(1): 011003.
[3]HUANG J, SHIAN S, SUO Z, et al. Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Advanced Functional Materials, 2013, 23(40): 5056-5061.
[4]KOH S, KEPLINGER C, LI T, et al. Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 33-41.
[5]GAO X, CAO C, GUO J, et al. Elastic electroadhesion with rapid release by integrated resonant vibration. Advanced Materials Technologies, 2019, 4(1): 36-39.
[6]CAO C J, HILL T L, CONN A T, et al. Nonlinear dynamics of a magnetically coupled dielectric elastomer actuator. Physical Review Applied, 2019, 12(4): 52-64.
[7]YU L, GONZALEZ L B, HVILSTED S, et al. Soft silicone based interpenetrating networks as materials for actuators//Electroactive Polymer Actuators and Devices (EAPAD), Mar.9-13, 2014, San Diego, California, United States. New Yok: SPIE, 2014: 90560C.
[8]CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575(7782): 324-329.
[9]CAO C, GAO X, CONN A T. A magnetically coupled dielectric elastomer pump for soft robotics. Advanced Materials Technologies, 2019, 4(8): 214-221.
[10]CAO C, GAO X, CONN A T. A compliantly coupled dielectric elastomer actuator using magnetic repulsion. Applied Physics Letters, 2019, 114(1): 011904.
[11]JI X, LIU X, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019, 4(37): 6451.
[12]CAO C, GAO X, BURGESS S, et al. Power optimization of a conical dielectric elastomer actuator for resonant robotic systems. Extreme Mechanics Letters, 2020, 35: 100619.
[13]SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 2016, 28(2): 205-205.
[14]HUANG J C. Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology, 2002, 21(4): 299-313.
[15]BANNYCH A, KATZ S, BARKAY Z, et al. Preserving softness and elastic recovery in silicone-based stretchable electrodes using carbon nanotubes. Polymers, 2020, 12(6): 1345.
[16]BOKOBZA L. Multiwall carbon nanotube elastomeric composites: A review. Polymer, 2007, 48(17): 4907-4920.
[17]MATYSEK M, LOTZ P, WINTERSTEIN T, et al. Dielectric elastomer actuators for tactile displays//World Haptics 2009: Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar.18-20, 2009, Salt Lake City, UT, USA, New York: IEEE, 2009: 290-295.
[18]CAO C, GAO X, CONN A T. A magnetically coupled dielectric elastomer pump for soft robotics. Advanced Materials Technologies, 2019, 4(8): 1900128.
[19]MA G, WU X, CHEN L, et al. Characterization and optimization of elastomeric electrodes for dielectric elastomer artificial muscles. Materials, 2020, 13(23): 5542.
[20]HUANG J C. Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology, 2002, 21(4): 299-313.
[21]ROSSET S, SHEA H R. Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics A, 2013, 110(2): 281-307.
[22]ROSSET S, SAINT-AUBIN C D, POULIN A, et al. Assessing the degradation of compliant electrodes for soft actuators. Review of Scientific Instruments, 2017, 88(10): 105002.
[23]DE SAINT-AUBIN C A, ROSSET S, SCHLATTER S, et al. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes. Smart Materials & Structures, 2017, 27(7): 221-234.
[24]SCHLATTER S, ROSSET S, SHEA H. Inkjet printing of carbon black electrodes for dielectric elastomer actuators. Electroactive Polymer Actuators and Devices (Eapad), 2017, 65(8): 10163.
[25]ZHANG J, SHENG J, LIU X, et al. Temperature effect on electromechanical properties of polyacrylic dielectric elastomer: an experimental study. Smart Materials and Structures, 2020, 29(4): 047002.
[26]ZHANG J, LIU X, LIU L, et al. Modeling and experimental study on dielectric elastomers incorporating humidity effect. EPL (Europhysics Letters), 2020, 129(5): 57002.
[27]ZHANG J, LIU L, CHEN H. Electromechanical properties of soft dissipative dielectric elastomer actuators influenced by electrode thickness and conductivity. Journal of Applied Physics, 2020, 127(18): 184902.
[28]YAO W, GIH K, HOONG T, et al. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bioinspired wing flappers. Smart Materials and Structures, 2014, 23(2): 025021.
[29]MCCOUL D, HU W, GAO M, et al. Recent advances in stretchable and transparent electronic material. Advanced Electronic Materials, 2016, 2(5): 00407.
[30]GAO X, SHI Z, LIU C, et al. Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests. Polymer Testing, 2015, 44: 82-92.
[31]HODGINS M, RIZZELLO G, NASO D, et al. An electro-mechanically coupled model for the dynamic behavior of a dielectric electro-active polymer actuator. Smart Materials and Structures, 2014, 23(10): 104006.
[32]LINNEBACH P, RIZZELLO G, SEELECKE S. Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump. Smart Materials and Structures, 2020, 29: 075021.
碳基复合双聚合物柔性电极的制备及刚度性能优化
吴晓君, 文斌华, 童鑫, 张迎
(西安建筑科技大学 机电工程学院, 陕西 西安 710055)
摘要:本文提出一种碳基复合双聚合物柔性电极的制造方法, 通过调节碳黑的质量分数以及Ecoflex20和RT625之间的不同比例, 改变柔性电极的刚度, 利用拉伸机对其延展性以及软硬度进行测试, 通过源表进行导电率的测量, 最后将其移印在介电弹性体(DE)薄膜上, 并利用高压放大器进行介电弹性体驱动器(DEA)加电动力学测试。 研究表明, 基于此方法制造的柔性电极具有高拉伸性(>200%)、低刚度(<300 kPa)以及高导电率(0.049 3 S/cm)。 实验结果表明, 基于此柔性电极移印法制作的DEAs在动态响应下的位移输出高达1.189 mm, 是同类型的1.64倍和1.32倍。 同时, 此配方能够延长原有柔性电极油墨的固化时间, 可为柔性电极和DEAs的制作提供一种参考。
关键词:介电弹性体驱动器(DEA);碳基复合双聚合物柔性电极;刚度; 导电率
引用格式:WU Xiaojun, WEN Binhua, TONG Xin, et al. Fabrication and stiffness optimization of carbon-based composite double polymer compliant electrode. Journal of Measurement Science and Instrumentation, 2022, 13(4): 471-479. DOI: 10.3969/j.issn.1674-8042.2022.04.010
[full text view]