此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Parameter matching of hydraulic balancing circuit based on AMESim

HE Ningning, ZHANG Ping, ZHANG Sen, SUN Tianyu


(School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)


Abstract: In order to improve the stability of the hydraulic balancing circuit, taking a certain type of vehicular radar flip device as the research object, the influence of different wind load, counterbalance valve parameters and hydraulic pump flow pulsation on the system flip process are simulated and analyzed. Through the force analysis of the flipping device, the total load curve of the flip cylinder is obtained by using MATLAB simulation. The simulation model of balancing circuit and plane flip device are built by AMESim software, and the reasonable parameter matching relationship is obtained by specific simulation analysis. The simulation results show that when the wind load is to the left and decreases, the system runs more stably. When wind load works in the right direction, the load on the piston rod of the hydraulic cylinder decreases but the jitter amplitude increases. At the same time, the stability of the balancing circuit can be effectively improved by properly reducing the damping diameter of the counterbalance valve, setting the pilot ratio to 4∶1 and using the hydraulic pump with small pulsation. The optimized parameter matching relationship can not only meet the requirements of typical system conditions and responses, but also improve the performance of the circuit.


Key words: balancing circuit; parameter matching; AMESim; counterbalance valve; simulation




References


[1]YAO P X, ZHANG X J. Analysis of the hydraulic balancing circuit. Chinese Hydraulics & Pneumatics, 2005(1): 74-76.

[2]GUIDO F R, ANDREA V. Energetic and dynamic impact of counterbalance valves in fluid power machines. Energy Conversion and Management, 2013, 76: 701-711.

[3]JI X, LIU X H. Simulation analysis of the counterbalance valve used in cranes based on AMESim software. Applied Mechanics and Materials, 2012, 233: 55-61.

[4]DU H B, BU D L. Research on parameter matching between steel ball self-locking hydraulic cylinder and counterbalance valve. Electro-Mechanical Engineering, 2020, 36(3): 5-9.

[5]LI F, MA C L. Research on simulation and parameters optimization of dynamic characteristics of counterbalance valve. Machine Tool & Hydraulics, 2003(4): 232-233, +101. 

[6]CHEN J S, LIU X H. Effects of balancing valves on shaking from crane lifting systems. Chinese Journal of Construction Machinery, 2010, 8(1): 46-50.

[7]LIANG H X. Numerical analysis of the dynamic characteristics in hydraulic counterbalance value. Lanzhou: Lanzhou University of Technology, 2011.

[8]YI H, LIANG H X. Dynamic analysis of hydraulic screw-in counterbalance valve based on AMESim. Chinese Hydraulics & Pneumatics, 2011(10): 80-83.

[9]MIYAKAWA S. Stability of a hydraulic circuit with a counter-balance valve. Bulletin of Jsme, 2008, 21: 1750-1756.

[10]YUAN T H, YIN C B, LIU S, et al. Working properties of counterbalance valve based on AMESim code. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 273-280.

[11]LU S W. Research on The matching of counterbalance valve dynamic characteristics and balancing circuit. Harbin: Harbin Institute of Technology, 2016. 

[12]LU Z, LIU X, WANG T. Influence of counterbalance valve parameters on stability of the crane lifting system// International Conference on Mechatronics & Automation, Aug. 4-7, 2010, Xi’an, China, New York: IEEE, 2010: 1010-1014.

[13]XU P Y, PAN Y L, et al. Design of hydraulic system of lifting mechanism for mobile radar antenna. Chinese Hydraulics & Pneumatics, 2004(11): 25-27.

[14]WEI G A, YUAN Y C. Design of Hydraulic driving system in lift mechanism of radar antenna. Journal of Air Force Early Warning Academy, 2006(3): 189-191.

[15]BING Y H. Structure design and analysis of a large deployable vehicle-borne antenna. Harbin: Harbin Institute of Technology, 2017.


基于AMESim的液压平衡回路参数匹配研究


贺宁宁, 张平, 张森, 孙天宇


(西安建筑科技大学 机电工程学院, 陕西 西安 710055)


摘要:为了提高液压平衡回路的稳定性, 本文以某型车载雷达翻转装置为研究对象, 仿真分析了系统翻转过程中不同风载、 平衡阀参数及液压泵流量脉动对回路的影响。 通过对翻转装置进行受力分析, 利用MATLAB仿真得到翻转油缸所受总负载变化曲线; 通过AMESim 软件搭建平衡回路和平面翻转装置的仿真模型, 进行特定仿真分析得到合理的参数匹配关系。 仿真结果表明:风载向左且减小时, 系统运行稳定; 风载向右时, 液压缸活塞杆所受负载减小, 但其抖动幅度增加。 适当减小平衡阀控制油口阻尼直径、 先导比设置为4∶1和使用脉动较小的液压泵等方法能有效提高平衡回路稳定性。 优化的参数匹配关系既能满足典型系统工况及响应要求, 又能提高回路的性能。 


关键词:平衡回路; 参数匹配; AMESim; 平衡阀; 仿真


引用格式:HE Ningning, ZHANG Ping, ZHANG Sen, et al. Parameter matching of hydraulic balancing circuit based on AMESim. Journal of Measurement Science and Instrumentation, 2022, 13(4): 493-500. DOI: 10.3969/j.issn.1674-8042.2022.04.012


[full text view]