此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Analysis of safety characteristics of coal-based aviation kerosene


LI Chenliang1, LIU Quan1, ZHANG Jing1, SONG Xianzhao2, ZHANG Jianxin2, XU Sen1, ZHANG Dan1


(1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)


Abstract: The risk and thermal safety characteristics of GX kerosene, HX kerosene and WX kerosene are studied. Firstly, the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit measuring system. Then differential scanning calorimeter (DSC) is employed to perform linear heating experiment on kerosene to analyze its thermal decomposition characteristics. The pyrolysis kinetic parameters of three kinds of kerosene are calculated based on the thermal dynamic methods. The experimental results show that the flash point and lower explosion limit of GX kerosene are relatively low. The DSC test shows that the lowest initial decomposition temperature of HX kerosene is 116.5 ℃. According to pyrolysis kinetics calculation, the TD24 and apparent activation energy of HX kerosene are the minimum. ARC test shows that GX kerosene has the worst thermal stability under the adiabatic condition. The high temperature stabilities of the three kinds of kerosene all meet the requirements. On the whole, GX kerosene has the highest hazard, and HX kerosene has the lowest thermal safety. The accumulation of heat should be prevented during the storage and transportation of kerosene. This study provides the crucial safety characteristics data of coal-based aerospace kerosene-based, and provides technical support for engine reliability growth and performance improvement.


Key words: aerospace kerosene; hazard; pyrolysis kinetics; thermal safety



References


[1]TAN Y H. Reasearch on power system of heavy launch vehicle in China. Journal of Rocket Propulsion, 2011, 37(1): 1-6.

[2]LUO Y H, YOU Y, JIANG R P, et al. Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer. Journal of Rocket Propulsion, 2018, 44(5): 66-70.

[3]DU Z G, ZHU C G, WU J, et al. Investigation on drag-reduction technology of rocket kerosene. Journal of Rocket Propulsion, 2017, 43(6): 32-37.

[4]LI D, WANG J, LI P Q, et al. New generation of large launch vehicle CZ-5 launched successfully. Space International, 2016(11): 2-7.

[5]LI W L, LI P, ZHOU Y. Review and future trend of space propulsion technique using hydrocarbon propellants. Journal of Astronautics, 2015, 36(3): 243-252.

[6]MITROFANOV V V, PINAEV A V, ZHDAN S A. Calculations ofdetonation waves in Gas-Droplet systems. Acta Astronautica, 1979, 6(3-4): 281-296.

[7]BRADY B B, MARTIN L R, LANG V I. Effects of launch Ve‐hicle emissions in the stratosphere. Journal of Spacecraft and Rockets, 1971, 34(6): 774.

[8]PRIOR R C, FOWLER D K, MELLOR A M. Engineering design models for ramjet efficiency and lean blowoff. Journal of Propulsion and Power, 1971, 11(1): 117-123.

[9]EDWARDS T. Liquidfuels and propellants for aerospace propulsion: 1903-2003. Journal of Propulsion and Power, 2003, 19(6): 1905-1104.

[10]LI Y Y. Liquid propellant. Beijing: China Astronautic Publishing House, 2011.

[11]HAN W, YANG C, LAN H P, et al. Physical and chemical properties of blended fuel of coal-based and petroleum-based space kerosene. Journal of Rocket Propulsion, 2019, 45(2): 60-65.

[12]YU B B, JANG X S, YU J, et al. Experimental and chemical dynamics study on the inhibition of combustion of viation kerosene by C6F12O. CIESC Journal, 2022, 73(4): 1834-1844.

[13]XU H B, ZHANG Q Z, ZENG Y M, et al. Ignition and combustion performance for coal-based high energy kerosene. Journal of Propulsion Technology, 2022, 43(4): 200660.

[14]LIU Y, GU W, WANG J D, et al. Study on the laminar burning velocity of ethanol/RP-3 aviation kerosene premixed flame. Combustion and Flame, 2022, 238: 111921.

[15]NING Y Q, ZHANG L, WANG Z, et al. Effect of initial temperature and initial pressure on the lower explosion limit of aviation kerosene. IOP Conference Series: Earth and Environmental Science, 2021, 772(1): 012072.

[16]MA H Y. Aerospace kerosene.Beijing: China Astronautic Publishing House, 2003.

[17]SHENG T, PENG Q T, XIA B L, et al. Analysis of composition of rocket kerosene by gas chromatography-mass spectrometry. Chinese Journal of Energetic Materials, 2011, 19(3): 343-348.

[18]TIAN B P, ZHANG G Y, PENG Q, et al. Determination of aromatic hydrocarbon in rocket kerosene by high performance liquid chromatography. Modern Instruments and Medical Treatment, 2012, 18(5): 72-74.

[19]ZHANG G Y, PENG Q T, LI Z, et al. Determination of composition of hydrocarbons in rocket kerosene of GC with field ionization-high resolution time of flignt-mass spectrometry. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(2): 210-213.

[20]REN C B, SHEN Z X, MA C F, et al.Research of components in rocket kerosene by comprehensive two-dimensional gas chromatography. Journal of Astronautic Metrology and Measurement, 2018, 38(4): 90-94.

[21]ZHANG X, WANG Z, WANG X, et al. Thermal stability of high power lithium-ion battery electrolytes. Chemical Industry and Engineering Progress, 2016, 35(4): 1140-1143.

[22]LI G Y, PAN Y, JIANG J C. Experimental study on flash points of binary organic mixtures. Chemical Engineering (China), 2013(1), 41(1): 28-36.

[23]SHENG R H, PAN Y, NI L. Prediction of flash points for ternary organic-water solution mixtures by support vector machine. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(6): 57-59.

[24]CUI K Q. Safety engineering dictionary. Beijing: Chemical Industry Press, 1995.


煤基航天煤油安全特性分析


李辰亮1, 刘泉1, 张晶1, 宋先钊2, 张建新2, 徐森1, 张丹1


(1. 南京理工大学 化学与化工学院,  江苏 南京 210094;  2. 南京理工大学 机械工程学院,  江苏 南京 210094)


摘要:本文研究了GX煤油、 HX煤油、 WX煤油3种典型煤油的危险性和热安全特性。 首先, 利用自行设计的爆炸极限测量系统, 确定了3种煤油蒸汽的爆炸下限。 然后, 使用差示扫描量热仪(DSC)对煤油进行线性加热实验, 分析煤油的热分解特性。 采用动力学方法计算并比较了3种煤油的热解动力学参数。 实验结果表明: GX煤油的闪点及爆炸下限相对较低。 DSC测试表明, HX煤油的最低初始分解温度为116.5 ℃。 由热解动力学计算可知, HX煤油的TD24与表观活化能较小。 由ARC试验得到, 在绝热条件下GX煤油的热稳定性最差。 3种煤油的高温稳定性均可达到要求。 综合来看, GX煤油的危险性最高, HX煤油的热安全性最低, 故在煤油的储运过程中要防止热量的累积。 此研究提供了煤基航天煤油基础的安全特性数据, 为发动机可靠性增长与性能提升提供了技术支撑。


关键词:航天煤油; 危险性; 热解动力学; 热安全性


引用格式:LI Chenliang, LIU Quan, ZHANG Jing, et al. Analysis of safety characteristics of coal-based aviation kerosene. Journal of Measurement Science and Instrumentation, 2022, 13(4): 480-492. DOI: 10.3969/j.issn.1674-8042.2022.04.011


[full text view]