此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

High-precision inductance measurement system based on double-excitation auto-balancing bridge

AI Yu1, FU Xiao1, LI Yao2, WANG Xianquan1, DUAN Fajie1, JIANG Jiajia1


(1. State Key Lab of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;2. Systems Engineering Research Institute, China State Shipbuilding Corporation, Beijing 100036, China)


Abstract: In order to achieve high precision measurement of inductance in a wide frequency range, a method of inductance measurement based on double-excitation auto-balancing bridge is proposed. In this method, the direct digital synthesizer (DDS) as signal generator is used as the bridge excitation source, and the bridge is automatically balanced by adjusting and measuring the voltage ratio. Using standard resistors, the system can achieve high precision measurement of four-terminal pair inductors in the frequency range of 100 Hz-100 kHz. Aiming at the low efficiency of bridge balancing, an iterative balancing algorithm based on the steepest descent method is proposed. In order to suppress the interference caused by the initial phase change and non-integer periodic sampling, the high-precision measurement of the complex impedance of inductance is realized based on the all-phase fast Fourier transform (apFFT). Finally, the corresponding measurement system is built and the inductance measurement experiment is carried out. The experimental results show that the relative error of the system for inductance measurement can be as low as 0.009%, and the optimal relative measurement uncertainty of the system can reach 9.89×10-5 compared with 5×10-4 of commercial impedance analyzer.


Key words: double-excitation auto-balancing bridge; inductance measurement; bridge balancing; all-phase fast Fourier transform (apFFT);  relative measurement uncertainty


References


[1]GU J, YANG Y, LU Q, et al. Research on high precision AC bridge based on digital proportion technology. Chinese Journal of Scientific Instrument, 2020, 41(7): 29-37.

[2]CUTKOSKY R D. Techniques for comparing four-terminal-pair admittance standards. Journal of Research of the National Bureau of Standards Section C: Engineering and Instrumentation, 1970, 74C(3/4): 63.

[3]CALLEGARO L, D’ELIA V, BOHACEK J. Four terminal-pair inductance comparison between INRIM and CTU. IEEE Transactions on Instrumentation & Measurement, 2009, 58(01): 87-93.

[4]CORNEY A C. Digital generator assisted impedance bridge. IEEE Transactions on Instrumentation & Measurement, 2003, 52(2): 388-391.

[5]CALLEGARO L, D’ELIA V, BOHACEK J. Automated system for inductance realization traceable to AC resistancewith a three-voltmeter method. IEEE Transactions on Instrumentation & Measurement, 2001, 50(6): 1630-1633.

[6]WALTRIP B C, OLDHAM N M. Digital impedance bridge. IEEE Transactions on Instrumentation & Measurement, 1995, 44(2): 436-439.

[7]RAMM G, MOSER H. New multifrequency method for the determination of the dissipation factor of capacitors and of the time constant of resistors. IEEE Transactions on Instrumentation & Measurement, 2005, 54(2): 521-524.

[8]YAN Y, LU W, LU H, et al. A digital impedance bridge with auto-balancing source ratio.2016 Conference on Precision Electromagnetic Measurements, Jul. 10-15, 2016, Ottawa, ON, Canada. New York: IEEE, 2016: 1-2.

[9]OVERNEY F, JEANNERET B. RLC bridge based on an automated synchronous sampling system. IEEE Transactions on Instrumentation & Measurement, 2011, 60(7): 2393-2398.

[10]WANG S X. The evolution of wheatstone bridge to Kelvin Bridge. Journal of Changzhou Institute of Education, 1997(2): 29-33.

[11]OVERNEY F, JEANNERET B. Realization of an inductance scale traceable to the quantum Hall effect using an automated synchronous sampling system. Metrologia, 2010, 47(6): 690-698.

[12]WANG Z H, HUANG X D. The principle and application of phase measurement based on all phase spectrum analysis. Journal of Data Acquisition and Processing, 2009, 24(6): 777-782.

[13]WANG Z H, HUANG X D. All phase FFT phase measurement method. World Sci-Tech R & D, 2007, 29(4): 28-32.

[14]WANG Z H, HUANG X D. All phase spectrum analysis and filtering technology of digital signal. Beijing: Electronic Industry Press, 2009.


基于双激励自动平衡电桥的高精度电感测量系统


艾宇1, 傅骁1, 李遥2, 王宪全1, 段发阶1, 蒋佳佳1


(1. 天津大学 精密测量技术与仪器国家重点实验室, 天津 300072;2. 中国船舶工业系统工程研究院, 北京 100036)


摘要:为实现宽频率范围内电感量值的高精度测量, 提出了一种基于双激励自动平衡电桥的电感测量方法。 该方法利用DDS信号发生器作为电桥激励源, 通过调节及测量电压比例实现电桥的自动平衡。 系统利用标准电阻可实现100 Hz-100 kHz频率范围内的四端对电感高精度测量。 针对电桥调平效率低的问题, 设计了基于最速下降法的迭代调平算法。 为了抑制信号初相位变化和非整数周期采样带来的干扰, 提出了基于全相位快速傅里叶变换, 可实现电感复阻抗值的高精度测量。 依据上述方法搭建了相应的测量系统, 并进行了电感测量实验。 实验表明, 系统对典型电感值测量的相对误差最小可达0.009%, 且相比于商用阻抗分析仪5×10-4的最优相对测量不确定度, 本系统可达到9.89×10-5。


关键词:双激励自动平衡电桥; 电感测量; 全相位快速傅里叶变换; 相对测量不确定度


引用格式:AI Yu, FU Xiao, LI Yao, et al. High-precision inductance measurement system based on double-excitation auto-balancing bridge. Journal of Measurement Science and Instrumentation, 2022, 13(3): 253-260. DOI: 10.3969/j.issn.1674-8042.2022.03.001


[full text view]