此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Multi-objective particle swarm optimization by fusing multiple strategies

XU Zhenxing1, ZHU Shuiran2



(1. School of Management Science and Engineering, Anhui University of echnology, Ma’anshan 243032, China; 2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)


Abstract: To improve the convergence and distributivity of multi-objective particle swarm optimization, we propose a method for multi-objective particle swarm optimization by fusing multiple strategies (MOPSO-MS), which includes three strategies. Firstly, the average crowding distance method is proposed, which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost, ensuring efficient external archive maintenance and improving the algorithm’s distribution. Secondly, the algorithm utilizes particle difference to guide adaptive inertia weights. In this way, the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w. With different degrees of disparity, the size of w is adjusted nonlinearly, improving the algorithm’s convergence. Finally, the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy, which can avoid a single search direction and eliminate the lack of a random search direction, making the selection of the global optimal position more objective and comprehensive, and further improving the convergence of the algorithm. The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions, and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity.


Key words: multi-objective particle swarm optimization (MOPSO); spatially crowding congestion distance; differential guidance weight; hierarchical selection of global optimum



References



[1]LEONG W F, YEN G G. PSO-based multi-objective optimization with dynamic population size and adaptive local archives. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(5): 1270-1293.

[2]ZHANG Q, ZHOU A, JIN Y. RM-MEDA: A regularity model-based multi-objective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63.

[3]WANG Y, LI H X, YEN G G, et al. MOMMOP: Multi-objective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Transactions on Cybernetics, 2014, 45(4): 830-843.

[4]PESCADOR-ROJAS M, COELLO C A C. Collaborative and adaptive strategies of different scalarizing functions in MOEA/D//IEEE Congress on Evolutionary Computation, Jul.08-13, 2018, Rio de Janeiro, Brazil. New York: IEEE, 2018: 1-8.

[5]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.

[6]ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm//EUROGEN’2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Sept.19-21, 2001, Athens, Greece. European Thermatic Network INGENET, 2001: 103.

[7]ZHANG J, ZHOU A, ZHANG G. A multi-objective evolutionary algorithm based on decomposition and preselection//International Conference on Bio-Inspired Computing-Theories and Applications, Sept.25-28, 2015, Hefei, China. Berlin: Springer, 2015: 631-642.

[8]AZZOUZ R, BECHIKH S, SAID L B. A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Computing, 2017, 21(4): 885-906.

[9]CHEN C M, CHEN Y, ZHANG Q. Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization//IEEE Congress on Evolutionary Computation, May 18-21, 2009, Trondheim, Norway. New York: IEEE, 2009: 209-216.

[10]XU G, YANG Y, LIU B B, et al. An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. Journal of Computational and Applied Mathematics, 2015, 280: 310-326.

[11]ZHANG R, CHANG P C, SONG S, et al. Local search enhanced multi-objective PSO algorithm for scheduling textileproduction processes with environmental considerations. Applied Soft Computing, 2017, 61: 447-467.

[12]LIU R, LI J, FAN J, et al. A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction. Applied Soft Computing, 2018, 73: 434-459.

[13]SHI J, SUN J, ZHANG Q. Multi-objectivization inspired metaheuristics for the sum-of-the-parts combinatorial optimization problems. Applied Soft Computing, 2021, 103: 107157.

[14]WANG Q R, LI T W, ZHU C F. Short-time traffic flow prediction based on wavelet denoising and LSTM model.Journal of Measurement Science and Instrumentation, 2021, 12(2): 195-207.

[15]COELLO C A C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization//The 2002 Congress on Evolutionary Computation, May 12-17, 2002, Honolulu, HI, USA. New York: IEEE, 2002, 2: 1051-1056.

[16]HUANG W, ZHANG W. Adaptive multi-objective particle swarm optimization with multi-strategy based on energy conversion and explosive mutation. Applied Soft Computing, 2021, 113: 107937.

[17]HU W, Yen G G. Adaptive Multi-objective particle swarm optimization based on parallel cell coordinate system. IEEE Transactions on Evolutionary Computation, 2015, 19(1): 1-18.

[18]YU W W, XIE C W, BI Y Z, et al. Many-objective particle swarm optimization based on adaptive fuzzy dominance. Acta Automatica Sinica, 2018, 44(12): 2278-2289.

[19]YANG W S, CHEN L, WANG Y, et al. A high-dimensional multi-objective particle swarm optimization algorithm for fitness ranking. Journal of Xi’an University of Electronic Science and Technology, 48(03): 78-84.

[20]CHENG T, CHEN M, FLEMING P J, et al. An effective PSO-TLBO algorithm for multi-objective optimization//IEEE Congress on Evolutionary Computation, Jul.24-29, 2016, Vancouver, BC, Canada. New York: IEEE, 2016: 3977-3982.

[21]BALLING R. The maximin fitness function; multi-objective city and regional planning//International Conference on Evolutionary Multi-Criterion Optimization, Apr.08-11, 2003, Faro, Portugal. Berlin: Springer, 2003: 1-15.

[22]XIAO J, BI X J, WANG K J. Research of global ranking based many-objective optimization. Journal of Software, 2015, 26(7): 1574-1583.

[23]KENNEDY J, EBERHART R. Particle swarm optimization//ICNN’95-International Conference on Neural Networks, Aug.06, 2002, Perth, WA, Australia. New York: IEEE, 1995, 4: 1942-1948. 

[24]ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2): 173-195.

[25]DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems//2002 Congress on Evolutionary Computation, Aug.12-17, 2002, Honolulu, HI, USA. New York: IEEE, 2002, 1: 825-830.

[26]RAQUEL C R, NAVAL JR P C. An effective use of crowding distance in multiobjective particle swarm optimization//Tthe 7th Annual Conference on Genetic and Evolutionary Computation, Jun.25-29, 2005, Washington, DC, USA. New York: Association for Computing Machinery, 2005: 257-264.

[27]HU W, YEN G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Transactions on Evolutionary Computation, 2013, 19(1): 1-18.

[28]ZHANG X, Zheng X, CHENG R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Information Sciences, 2018, 427: 63-76.

[29]HUA Y, JIN Y, HAO K. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts. IEEE Transactions on Cybernetics, 2018, 49(7): 2758-2770.

[30]HAN H, LU W, QIAO J. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Transactions on Cybernetics, 2017, 47(9): 2754-2767.

[31]LIN Q, LI J, DU Z, et al. A novel multi-objective particle swarm optimization with multiple search strategies. European Journal of Operational Research, 2015, 247(3): 732-744.

[32]TIAN Y, XIANG X, ZHANG X, et al. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems//IEEE World Congress on Computational Intelligence, Jul.08-13, 2018, Rio de Janeiro, Brazil. New York: IEEE, 2018: 1-6.

[33]ZITZLER E, THIELE L. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.

[34]QIAO J, LI F, YANG S, et al. An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. Information Sciences, 2020, 512: 446-470.

[35]LI Z K, TAN J R, FENG Y X, et al. A multi-objective particle swarm optimization algorithm based on congestion distance ranking and its application. Computer Integrated Manufacturing Systems, 2008, 14(7): 1329-1336.



多策略融合改进的多目标粒子群算法


许振兴1, 祝水然2


(1. 安徽工业大学 管理科学与工程学院, 安徽 马鞍山 243032; 2. 天津大学 电气自动化与信息工程学院, 天津 300072)




摘要:为了提升多目标粒子群算法的收敛性和分布性, 提出了一种多策略融合改进的多目标粒子群优化算法(Multi-objective particle swarm optimization by fusing multiple strategies, MOPSO-MS)。 首先, 设计了空间平均拥挤距离法, 在全面考虑个体对拥挤距离的影响且降低算法时间复杂度和计算成本的基础上, 确保外部档案维护的高效性并提升了算法的分布性。 其次, 算法利用粒子差值指导自适应惯性权重, 以粒子的历史最优与种群最优粒子的差距程度来指导w取值, 随差距程度的不同非线性地调整w的大小, 可提升算法的收敛性。 最后, 设计分层选取全局最优策略, 以确定全局最优位置来控制搜索方向, 从而避免了搜索方向单一及搜索方向随机性不足, 使得全局最优位置选取更客观全面, 进一步提升了算法的收敛性。 该算法与另外8种算法在ZDT测试函数和DTLZ测试函数上进行对比试验, 结果表明, 该算法在收敛性和分布性上具有显著优势。 


关键词:多目标粒子群算法; 空间平均拥挤距离; 差值指导; 分层选取全局最优


引用格式: XU Zhenxing, ZHU Shuiran. Multi-objective particle swarm optimization by fusing multiple strategies. Journal of Measurement Science and Instrumentation, 2022, 13(3): 284-299. DOI: 10.3969/j.issn.1674-8042.2022.03.005


[full text view]