ZHANG Haiming1, WANG Yunkun2, MIAO Zhongcui2, WANG Zhihao2
(1. School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: For the two-level five-phase permanent magnet synchronous motor (FP-PMSM) drive system, an improved finite-control-set model predictive torque control (MPTC) strategy is adopted to reduce torque ripple and improve the control performance of the system. The mathematical model of model reference adaptive system (MRAS) of FP-PMSM is derived and a method based on fractional order sliding mode (FOSM) is proposed to construct the model reference adaptive system (FOSM-MRAS) to improve the motor speed estimation accuracy and eliminate the sliding mode integral saturation effect. The simulation results show that the FP-PMSM speed sensorless FCS-MPTC system based on FOSM-MRAS has strong robustness, good dynamic performance and static performance, and high reliability.
Key words: model reference adaptive system (MRAS); finite-control-set model predictive torque control (FCS-MPTC); fractional order sliding mode (FOSM); speed sensorless; five-phase permanent magnet synchronous motor (FP-PMSM)
References
[1]XIAO W Y, WANG Y, GENG L, et al. Research on torque impulse balance control strategy of single-phase and multi-phase open-circuit flux-switching motor. Chinese Journal of Electrical Engineering, 2018, 38(16): 4873-4885, 4993.
[2]TIAN B. Research on fault-tolerant control technology of five-phase permanent magnet synchronous motor drive system. Harbin: Harbin Institute of Technology, 2018.
[3]WANG B, WANG J, GRIFFO A, et al. A fault tolerant machine drive based on permanent magnet assistedsynchronous reluctance machine. IEEE Transactions on Industry Applications, 2018, 54(2): 1349-1359.
[4]LI T T, ZHAO W X, CHENG M, et al. Overview of fault-tolerant control and its key techniques for multiphase motors. Chinese Journal of Electrical Engineering, 2019, 39(2): 316-326.
[5]ZHENG X Q, MA W M, WANG D, et al. Fault-tolerant control of fifteen-phase induction machineunder asymmetrical fault condition. Proceedings of the CSEE, 2018, 38(4): 1212-1221.
[6]XIA C L, CHOU X D, WANG Z Q, et al. Predictive torque control based on vector action time. Chinese Journal of Electrical Engineering, 2016, 36(11): 3045-3053.
[7]SONG Z, XIA C, WANG Z, et al. Direct torque controlfor permanent magnet synchronous motor using super twisting algorithm. Transactions of China Electrotechnical Society, 2017, 32(15): 89-99.
[8]TATTE Y N, AWARE M V. Torque ripple and harmonic current reduction in a three-level inverter-fed direct-torque-controlled five-phase induction motor. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5265-5275.
[9]XIA C L, ZHANG T Y, ZHOU Z Q, et al. Model predictive torque control of three-level inverter permanent magnet synchronous motor with switching table. Journal of Electrical Engineering Technology, 2016, 31(20): 83-92.
[10]NIU F, HAN Z D, HUANG X Y, et al. PMSM model predictive flux control. Journal of Electrical Machinery and Control, 2019, 23(3): 34-41.
[11]VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives: advances and trends. IEEE Transactions on Industrial Electronics, 2017, 64(2): 935-947.
[12]KANG M X, LI C P, LIU T F. Observer based on model predictive control for engine torque tracking. Control and Decision Making, 2020, 35(4): 791-798.
[13]SHEN C. Study on the model prediction direct torque control system of vehicle permanent magnet synchronous motor. Zhenjiang: Jiangsu University, 2019.
[14]CHEN F Y, HUA W, HUANG W T, et al. Open-circuit fault tolerance strategy based on model predictive torque control for five-phase flux-switching permanent magnet motor. Chinese Journal of Electrical Engineering, 2019, 39(2): 337-346.
[15]XU Y, ZHOU Q, ZHANG B. A model predictive torque control strategy of PMSM with torque deadbeat duty cycle control//IEEE 8th International Power Electronics and Motion Control Conference, May 22-26, 2016, Hefei, China. New York: IEEE, 2016: 782-785.
[16]ZHANG X G, ZHANG L, HOU B S. Optimal model predictive torque control for permanent magnet synchronous Motor. Chinese Journal of Electrical Engineering, 2017, 37(16): 4800-4809.
[17]PAYAMI S, KUMAR B, RANJAN I, et al. DTC of three-level NPC inverter fed five-phase induction motor drive with novel neutral point voltage balancing scheme. IEEE Transactions on Power Electronics, 2018, 33(2): 1487-1500.
[18]LIM C S, LEVI E, JONES M, et al. FCS-MPC-based current control of a five-phase induction motor and its comparison with PI-PWM control. IEEE Transactions on Industrial Electronics, 2014, 61(1): 149-163.
[19]XUE C. Five-phase permanent magnet synchronous motor model predictive torque control. Chengdu: Southwest Jiaotong University, 2018.
[20]XIE W, WANG X, WANG F, et al. Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5402-5410.
[21]XUE C, SONG W S, WU X S, et al. Deadbeat optimization torque control algorithm for five-phase permanent magnet synchronous motor based on finite set model predictive control. Chinese Journal of Electrical Engineering, 2017, 37(23): 7014-7023.
[22]TERMIZI M S, LAZI J M, IBRAHIM Z, et al. Sensorless PMSM drives using extended Kalman filter (EKF)//New York: IEEE Conference on Energy Conversion. Oct. 30-31, 2017, Kuala Lumpur, Malaysia. New York: IEEE, 2017: 145-150.
[23]SHE Z T, ZOU W, DONG W H, et al. Extended Kalman filter combined with feed forward compensation PMSM position estimation: Control Theory and Applications, 2016, 33(10): 1312-1318.
[24]MEDJMADJ S, DIALLO D, MOSTEFAI M, et al. PMSM drive position estimation: contribution to the high-frequency injection voltage selection issue. IEEE Transactions on Energy Conversion, 2015, 30(1): 349-358.
[25]LI H Y, ZHANG X, YANG S Y, et al. Sensorless control of permanent magnet synchronous motor based on High Frequency Signal Injection. Journal of Electrical Technology, 2018, 33(12): 2653- 2664.
[26]NI S, LIU K S, ZHONG J, et al. Research on HFI method of speed sensorless for PMSM. Journal of China Three Gorges University, 2011, 35(5): 75-79.
[27]FAN R J. Research on speed sensorless PMSM with global robust optimal SMC. Electronic Design Engineering, 2016.
[28]GAO Y X, CHEN J, FAN Y P, et al. An adaptive sliding mode observer for speed sensorless control of induction motor. Journal of Electrical Machinery and control, 2017, 21(4): 8-16.
[29]SAIHI L, BOUHENNA A, CHENAFA M, et al. A robust sensorless SMC of PMSM based on sliding mode observer and extended Kalman filter//4th International Conference on Electrical Engineering. Dec. 13-15, 2015, Boumerdes, Algeria. New York: IEEE, 2015: 1-4.
[30]KOJABADI H M, CHANG L. Sensorless PMSM drive with MRAS-based adaptive speed estimator//37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, South Korea. New York: IEEE, 2017: 1-5.
[31]XIE M, GAO J, TANG C, et al. Speed and rotor position estimation of sensorless PMSM based on MRAS. Electronic Measurement Technology, 2017, 40(9): 111-115.
[32]BAO D, WANG Y, PAN X, et al. Improved sensorless control method combining SMO and MRAS for surface PMSM drives//IEEE Industry Applications Society Meeting, Oct. 1-5, 2017, Cincinati, OH, USA. New York: IEEE, 2017: 1-5.
[33]LIN M, LI Y H, WU C, et al. Permanent magnet synchronous motor predictive control based on sliding mode model reference adaptive system observer. Journal of Electrical Engineering Technology, 2017, 32(6): 156-163.
[34]PANDEY S, SONI N K, PANDEY R K. Fractional order integral and derivative (FOID) controller with anti-windup for temperature profile control//2nd International Conference on Computing for Sustainable Global Development. Mar. 11-13, 2015, New Delhi, India. New York: IEEE, 2015: 1567-1573.
[35]MIAO Z C, DANG J W, JU M, et al. Speed sensorless vector control of induction motor based on fractional sliding mode observation. Journal of Electrical Machinery and Control, 2018, 22(5): 84-93.
[36]XIONG L Y, WANG J. Fractional order sliding mode control for power quality of permanent magnet synchronous Motor. Chinese Journal of Electrical Engineering, 2019, 39(10): 3065-3075.
基于FOSM-MRAS五相永磁同步电机无速度传感器的FCS-MPTC
张海明1, 王运坤2, 缪仲翠2, 王志浩2
(1. 兰州交通大学 机电工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070)
摘要:针对五相两电平的五相永磁同步电机(Five-phase permanent magnet synchronous motor, FP-PMSM)驱动系统, 采用改进的有限集模型预测转矩控制(Finite-control-set model predictive torque control, FCS-MPTC)以达到减小转矩脉动提高系统控制性能的目的。 推导了FP-PMSM的(Model reference adaptive system, MRAS)数学模型, 并提出了基于分数阶滑模模型参考自适应(Fractional order sliding mode-model reference adaptive system, FOSM-MRAS)的速度观测器以提高电机速度估计精度并消除滑模积分饱和效应。 仿真结果表明, 采用基于FOSM-MRAS观测器的FP-PMSM无速度传感器MPTC控制系统具有较强的鲁棒性, 良好的动态性能和静态性能以及较高的可靠性。
关键词:模型参考自适应; 有限集模型预测转矩控制; 分数阶滑模; 无速度传感器; 五相永磁同步电机
引用格式:ZHANG Haiming, WANG Yunkun, MIAO Zhongcui, et al. Speed sensorless FCS-MPTC based on FOSM-MRAS five-phase permanent magnet synchronous motor. Journal of Measurement Science and Instrumentation, 2022, 13(3): 309-319. DOI: 10.3969/j.issn.1674-8042.2022.03.007
[full text view]