此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Bionic covert anti-reverberation active sonar detection method based on imitating whale whistles


JIANG Jiajia1, MIAO Yu1, LI Yao2, SUN Zhongbo1, LI Chunyue1, WANG Xianquan1, FU Xiao1, DUAN Fajie1


(1. State Key Lab of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; 

2. System Engineering Research Institute, China State Shipbuilding Corporation, Beijing 100036, China)


Abstract:The disguised covert detection method that imitates whale calls has received great attention in recent years because it can solve the traditional problem of the trade-off between long-range detection and covert detection. However, under strong reverberation conditions, traditional echo signal processing methods based on matched filtering will be greatly disturbed. Based on this, a disguised sonar signal waveform design is proposed based on imitating whale calls and computationally efficient anti-reverberation echo signal processing method. Firstly, this article proposed a disguised sonar signal waveform design method based on imitating whale calls. This method uses linear frequency modulation (LFM) signals to replace LFM-like segments in real whale calls, and extracts the envelope of the real whale call’s LFM-like segment to modify the LFM signal. Secondly, this article proposed an echo signal processing method of fractional Fourier transform (FrFT) based on target echo locating of synchronization signals. This method uses the synchronization signal to locate the target echo, and determines the step-size interval of the FrFT based on the information carried by the synchronization signal. Compared with the traditional FrFT, this method effectively reduces the amount of calculation and also improves the anti-reverberation ability. Finally, the excellent performance of the proposed method is verified by simulation results. 


Key words:active sonar system;  anti-reverberation;  disguised sonar waveform design;  echo signal processing


References


[1]ZHAO Z S, ZHAO A B, HUI J, et al.A frequency-domain adaptive matched filter for active sonar detection. Sensors, 2017, 17(7): 897-909. 

[2]ZHAO A B, MA L, MA X F, et al. An improved azimuth angle estimation method with a single acoustic vector sensor based on an active sonar detection system. Sensors, 2017, 17(2): 412.

[3]MARSZAL J, SALAMON R. Detection range of intercept sonar for CWFM signals. Archives of Acoustics, 2014, 39(2): 215-230.

[4]MARSZAL J, SALAMON R, KILIAN L. Application of maximum length sequence in silent sonar. Hydroacoustics, 2012, 15: 143-152.

[5]LOUREY S J. Frequency hopping waveforms for continuous active sonar//International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 19-24, 2015, IEEE, South Brisbane, Queensland, Australia, Washington: IEEE Computer Society, 2015: 1832-1835.

[6]STANCIU M I, AZOU S, 

ERBAˇNESCU A. On the blind estimation of chip time of time-hopping signals through minimization of a multimodal cost function. IEEE Transactions on Signal Processing, 2010, 59(2): 842-847.

[7]LYNCH R S, WILLETT P K, REINERT J M. Some analysis of the LPI concept for active sonar. IEEE Journal of Oceanic Engineering, 2012, 37(3): 446-455.

[8]CAPUS C, PAILHAS Y, BROWN K, et al. Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus). The Journal of the Acoustical Society of America, 2007, 121(1): 594-604.

[9]JIANG J J, WANG X Q, DUAN F J, et al. Bio-inspired steganography for secure underwater acoustic communications. IEEE Communications Magazine, 2018, 56(10): 156-162.

[10]LIU S, MA T, QIAO G, et al. Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles. Applied Acoustics, 2017, 120: 120-128.

[11]JIANG J, WANG X, DUAN F, et al. Bio-inspired covert active sonar strategy. Sensors, 2018, 18(8): 2436.

[12]CHIN-HSING C, JIANN-DER L, MING-CHI L. Classification of underwater signals using wavelet transforms and neural networks. Mathematical and Computer Modelling, 1998, 27(2): 47-60.

[13]HUYNH Q Q, COOPER L N, INTRATOR N, et al. Classification of underwater mammals using feature extraction based on time-frequency analysis and BCM theory. IEEE Transactions on Signal Processing, 1998, 46(5): 1202-1207.

[14]GHOSH J, DEUSER L, BECK S D. A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals. IEEE Journal of Oceanic Engineering, 1992, 17(4): 351-363.

[15]XING G, CAI Z. Ocean reverberation suppressing by direct data domain based STAP//International Conference on Signal Processing, Oct. 21-25, 2012, IEEE, Beijing, China. Washington: IEEE Computer Society,  2012: 2085-2088.

[16]LI X, XIA Z, WANG X, et al. Blind separation of underwater target echoes in reverberation background.  Journal of Harbin Engineering University, 2015, 36(1): 62-67.

[17]BING D, RAN T, LIN Q, et al. A new method of anti-reverberation via fractional Fourier transform//International Conference on Neural Networks and Signal Processing, Dec. 14-17, 2003, IEEE, Nanjing, China. Washington: IEEE Computer Society, 2003: 1379-1381.

[18]STANKOVIC' L J, ALIEVA T, BASTIAANS M J. Time-frequency signal analysis based on the windowed fractional Fourier transform. Signal Processing, 2003, 83(11): 2459-2468.

[19]SERBES A, DURAK L. Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3): 675-689.

[20]GUAN J, CHEN X L, HUANG Y, et al. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter. IET Radar, Sonar & Navigation, 2012, 6(5): 389-401.

[21]YU G, PIAO S, HAN X. Fractional Fourier transform-based detection and delay time estimation of moving target in strong reverberation environment. IET Radar, Sonar & Navigation, 2017, 11(9): 1367-1372.

[22]JIANG J, WANG X, DUAN F, et al. Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds. Applied Acoustics, 2019, 146: 31-37.

[23]JIANG J, BU L, WANG X, et al. Clicks classification of sperm whale and long-finned pilot whale based on continuous wavelet transform and artificial neural network. Applied Acoustics, 2018, 141: 26-34.

[24]RICHARDSON W J, GREENE JR C R, MALME C I, et al. Marine mammals and noise.New York: Academic Press, 2013.

[25]BAZA-DURN C, AU W W L. The whistles of Hawaiian spinner dolphins. The Journal of the Acoustical Society of America, 2002, 112(6): 3064-3072.

[26]JIANG J, BU L, DUAN F, et al. Whistle detection and classification for whales based on convolutional neural networks. Applied Acoustics, 2019, 150: 169-178.

[27]JIANG J, SUN Z, DUAN F, et al. Disguised bionic sonar signal waveform design with its possible camouflage application strategy for underwater sensor platforms. IEEE Sensors Journal, 2018, 18(20): 8436-8449.

[28]GAVRILOV A N, MCCAULEY R D, SALGADO-KENT C, et al. Vocal characteristics of pygmy blue whales and their change over time. The Journal of the Acoustical Society of America, 2011, 130(6): 3651-3660.

[29]KHAYYAM H. Stochastic models of road geometry and wind condition for vehicle energy management and control. IEEE Transactions on Vehicular Technology, 2012, 62(1): 61-68.

[30]NAMIAS V. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 1980, 25(3): 241-265.

[31]JIANG J, WANG X, DUAN F, et al. Bio-inspired covert active sonar strategy. Sensors, 2018, 18(8): 2436. 

[32]ABRAHAM D A, LYONS A P. Simulation of non-Rayleigh reverberation and clutter. IEEE Journal of Oceanic Engineering, 2004, 29(2): 347-362.


仿鲸whistles叫声的抗混响主动声呐探测方法


蒋佳佳1, 苗宇1, 李遥2, 孙中波1, 李春月1, 王宪全1, 傅骁1, 段发阶1 


(1. 天津大学 精密测量技术与仪器国家重点实验室, 天津 300072;2. 中国船舶工业系统工程研究院, 北京 100036)


摘  要:    基于仿鲸叫声的伪装隐蔽探测方法, 能够解决远距离探测和隐蔽性探测之间的权衡这一传统难题, 近年来受到了极大关注, 但在强混响条件下, 基于匹配滤波的传统回波信号处理方法会受到极大干扰。 本文提出了一种仿鲸whistles叫声的伪装声呐波形设计及计算高效的抗混响回波信号处理方法。 一方面, 提出了一种适用于强混响条件下的仿鲸声伪装声呐波形设计方法, 该方法使用线性调频 (linear frequency modulation, LFM) 信号替换真实鲸叫声中的类LFM片段, 并提取了真实鲸叫声类LFM片段的包络对该LFM信号进行修饰, 通过比较伪装探测信号和真实鲸叫声时频轮廓的皮尔逊系数, 证明了该方法在不影响隐蔽性的前提下完成了LFM信号的替换。 另一方面, 提出了一种基于同步信号定位目标回波的分数阶傅里叶变换回波信号处理方法, 该方法使用同步信号定位目标回波, 并基于同步信号携带的信息确定分数阶傅里叶变换的步长区间。 相比于传统的分数阶傅里叶变换, 该方法在有效减少计算量的同时, 其抗混响能力也得到了提升。 最后, 通过仿真结果验证了所提方法的优异性。


关键词: 主动声呐系统; 抗混响; 伪装声呐波形设计; 声呐信号处理


引用格式:JIANG Jiajia, MIAO Yu, LI Yao, et al. 

Bionic covert anti-reverberation active sonar detection method based on imitating whale whistles. 

Journal of Measurement Science and Instrumentation, 2022, 13(2):127-137. 

DOI:10.3969/j.issn.1674-8042.2022.02.001


[full text view]