WEI Minghui1, TU Fengmiao1, ZHANG Peng1, JIANG Lixia1, JIANG Pengbo1, JING Yu2
(1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China; 2. Kensington Campus, University of New South Wales, Kensington 2052, NSW)
Abstract:In the traditional pipeline magnetic flux leakage (MFL) detection technology, circumferential or axial excitation is mainly used to excite the magnetic field of defects. However, the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools, in which circumferential cracks can be clearly identified, but the detection sensitivity of axial cracks is not high, thus forming a detection blind zone. Therefore, a composite excitation multi-extension direction defect MFL detection method is proposed, which can realize the simultaneous detection of axial and circumferential defects. On the basis of the electromagnetic theory Maxwell equation and Biot Savart law, a mathematical model of circumferential and axial magnetization is firstly established. Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device, and a simulation analysis of crack detection in multiple extension directions is carried out. Finally, under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model, the sample vehicle towing experiment is carried out. The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions. Based on the final experimental results, the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.
Key words:composite excitation; magnetic flux leakage (MFL); multi-extension direction defect; pipeline detection
References
[1]ZHANG P, WEI M H, GUO Z Y, et al. Research progress of magnetic flux leakage detection technology. Journal of Measurement Science and Instrumentation, 2021, 12(1): 1-11.
[2]WANG Y J, LIU X C, WU B, et al. Dipole modeling of stress-dependent magnetic flux leakage. Ndt & E International, 2018, 95: 1-8.
[3]SHI Y, ZHANG C, LI R, et al. Theory and application of magnetic flux leakage pipeline detection. Sensors, 2015, 15(12): 31036-31055.
[4]OKOLO C K, MEYDAN T. Pulsed magnetic flux leakage method for hairline crack detection and characterization. Aip Advances, 2018, 8(4): 047207.
[5]ZHOU Z M, QIN M, WAN F, et al. Recognizing coiled tubing defect characteristics based on weak magnetic detection technology. IEEE Transactions on Magnetics, 2019, 55(9): 6201406.
[6]TSUKADA K, MAJIMA Y, NAKAMURA Y, et al. Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer. IEEE Transactions on Magnetics, 2017, 53(11): 2501305.
[7]KIM H M, PARK G S. A new sensitive excitation technique in nondestructive inspection for underground pipelines by using differential coils. IEEE Transactions on Magnetics, 2017, 53(11): 6202604 .
[8]YANG L J, GENG H, GAO S W. Study on high-speed magnetic flux leakage testing technology based on multistage magnetization. Journal of Instrumentation, 2018, 39(6): 148-156.
[9]LIU B, MA Z Y, LIU Z Q, et al. Research on internal detection technology for axial crack of long-distance oil and gas pipeline based on micromagnetic method. Struct Health Monit, 2020, 19(4): 1123-1136.
[10]YANG L J, LIANG C Z, GAO S W, et al. Simulation and experimental research on pipeline magnetic flux leakage internal inspection crack defects. Journal of Liaoning University of Petroleum & Chemical Technology, 2020, 40(6): 59-63.
[11]WU D, LIU Z, WANG X, et al. Composite magnetic flux leakage detection method for pipelines using alternating magnetic field excitation. Ndt & E International, 2017, 91: 148-155.
[12]SONG K, CHEN C, KANG Y H, et al. Research on the mechanism of AC magnetic flux leakage detection method based on U-shaped yoke probe. Journal of Instrumentation, 2012, 33(9): 1980-1985.
[13]WANG X H, WU D H, LI X S, et al. A new method of variable excitation MFL detection under the condition of miniature magnetizer. Journal of Instrumentation, 2015, 36(1): 70-77.
[14]WANG P, GAO Y L, TIAN G Y, et al. Velocity effect analysis of dynamic magnetization in high speed magnetic flux leakage inspection. Ndt & E International, 2014, 64: 7-12.
[15]GENG H, YANG L J, XIANG X H, et al. Detection and analysis of high speed magnetic flux leakage signal of steel pipe. Instrument Technology and Sensors, 2021(11): 88-93, 98.
[16]XU F H, XU Z D. Analysis of magnetic circuit of multistage coil magnetorheological damper. Journal of Southeast University (Natural Science Edition), 2016, 46(1): 100-104.
[17]CHEN Y E, ZHU Y Y. Using MATLAB to simulate the magnetic field distribution of Helmholtz coils. Electronic Technology, 2008(1): 134-136.
[18]YANG L J, GENG H, GAO S W, et al. Research on establishing process and influencing factors of saturation field in high-speed magnetic flux leakage testing. Chinese Journal of Scientific Instrument, 2019, 40(10): 54-62.
[19]PIAO G Y, GUO J B, HU T H, et al. The effect of motion-induced eddy current on high-speed magnetic flux leakage (MFL) inspection for thick-aall steel pipe. Res Nondestruct Eval, 2020, 31(1): 48-67.
[20]ZHANG G. Magnetizer design of circumferential magnetic flux leakage inspection in pipeline//International Conference on Computer Application and System Modeling (ICCASM 2010), Oct. 22-24, 2011, IEEE, Taiyuan, China. Washington: IEEE Computer Society, 2010: 681-685.
[21]ZHANG G G, LIU J. Finite element modelling of circumferential magnetic flux leakage inspection in pipeline//International Conference on Intelligent Computation Technology and Automation, May 11-12, 2010, IEEE, Changsha, China. Washington: IEEE Computer Society, 2010: 327-330.
[22]LIU B, HE L Y, ZHANG H, et al. The axial crack testing model for long distance oil-gas pipeline based on magnetic flux leakage internal inspection method. Measurement, 2017, 103: 275-82.
[23]DUTTA S A, GHORBEL F H, STANLEY R K. Simulation andanalysis of 3-D magnetic flux leakage. IEEE Transactions on Magnetics, 2009, 45(4): 1966-1972.
复合激励多延展方向缺陷漏磁检测技术
韦明辉1, 涂凤秒1, 张 鹏1, 江丽霞1, 姜蓬勃1, 敬 彧2
(1. 西南石油大学 机电工程学院, 四川 成都 610500; 2. 肯辛顿校区 新南威尔大学, 肯辛顿 新南威尔 2052)
摘 要: 传统的管道漏磁检测技术中, 主要采用周向或者轴向激励进行缺陷的磁场激励。 然而, 目前已投入运营的管道检测装置主要是轴向励磁漏磁检测工具, 其中, 周向裂纹能够明显地被识别, 但对轴向裂纹的检测灵敏度不高, 从而形成了检测盲区。 本文提出了一种复合激励多延展方向缺陷漏磁场检测方法, 可实现对轴向和周向缺陷的同步检测。 首先, 在基础电磁理论麦克斯韦方程和毕奥萨伐尔定律的基础上, 建立了圆周和轴向磁化的数学模型。 然后, 利用有限元仿真软件建立新型漏磁检测装置模型, 对多延伸方向的裂纹检测进行仿真分析。 最后, 在非饱和磁化状态下漏磁场变化率随外部励磁强度变化的关系模型和多级线圈磁化模型的条件下, 进行了样车牵引试验。 本实验旨在分析复合激励多延展方向缺陷漏磁检测装置对不同延展方向缺陷的检测可行性与有效性。 实验结果表明, 新型复合激励多延展方向漏磁场检测器对于轴向与周向延展方向缺陷都有较好的检测效果。
关键词: 复合激励; 励磁漏磁; 多延展方向缺陷; 管道检测
引用格式:WEI Minghui, TU Fengmiao, ZHANG Peng, et al. Composite excitation multi-extension direction defect magnetic flux leakage detection technology. Journal of Measurement Science and Instrumentation, 2022, 13(2):156-165. DOI:10.3969/j.issn.1674-8042.2022.02.004
[full text view]