此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Comparative study of differential polarization imaging using linear and circular polarization in different scattering medium

TIAN Heng1, WU Yelin1, TIAN Jingjing1, ZHANG Bo1, ZHU Jingping2


(1. School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China; 2. Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China)


Abstract:Differential polarization imaging has been widely used to selectively probe the target embedded in turbid medium. A thorough understanding of image quality involved in differential polarization imaging is essential for practical use. Using polarized light Monte Carlo simulations, it has been investigated how the state of polarization of incident light and the optical properties of scattering medium affect the image contrast. The contrast for linear polarization is similar to that for circular polarization in the isotropic medium comprising small-particles. The image quality is more pronounced for circular polarization in the isotropic medium containing large-particles and the birefringent medium. Furthermore, differential polarization imaging provides better image quality for the birefringent medium compared with isotropic medium. The effect of particle-size and birefringence on the polarization characteristics of target light and backscattered light is investigated. With the help of numerical results, the polarization characteristics of target light and backscattered light, the image quality is well explained in the turbid medium mentioned above.


Key words:polarization imaging; target detection; Monte Carlo simulation; scattering; birefringence



References


[1]ZEVALLOS L M E, GAYEN S K, ALRUBAIEE M, et al. Time-gated backscattered ballistic light imaging of objects in turbid water. Applied Physics, 2005, 86:011115. 

[2]ZHENG Y P, SI J H, TAN W J, et al. Imaging transparent objects in a turbid medium using a femto second optical Kerr gate. Chinese Physical Letter, 2017, 34(10):104204.

[3]PITTER M, JAKEMAN E, HARRIS M. Heterodyne detection of enhanced backscatter Optics Letters, 1997, 22(6):393-395.

[4]O’LEARY M A, BOAS D A, CHANCE B, et al. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography. Optics Letters, 1995, 20(5):426-428.

[5]TIAN H, ZHU J P, TAN S W, et al. Rapid underwater target enhancement method based on polarimetric imaging. Optics and Laser Technology, 2018, 108:515-520.

[6]SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze. Applies Optics, 2003, 42(3):511-525.

[7]LI X B, HU H F, ZHAO L, et al. Pseudo-polarimetric method for dense haze removal. IEEE Photonics Journal, 2019, 11(1):6900611.

[8]YANG L M, LIANG J, ZHANG W F, et al. Underwater polarimetric imaging for visibility enhancement utilizing active unpolarized illumination. Optics Communications, 2019, 438:96-101.

[9]LI X P, LIAO R, ZHOU J L, et al. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Applied Optics, 2017, 56(23):6520-6530.

[10]ANNA G, GOUDAIL F, DOLFI D. Polarimetric target detection in the presence of spatially fluctuating Mueller matrices. Optics Letters, 2011, 36(23):4590-4592.

[11]ZHI D D, LI J J, GAO D Y, et al. Error analysis and Stokes parameter measurement of rotating quarter-wave plate polarimeter. Chinese Physics B, 2017, 26(12):124201.

[12]WANG H B, LIAO Y, SHEN J, et al. Method of underwater polarization image fusion based on hierarchical and Multi-scale transform. Acta Photonica Sinica, 2014, 43(5):0510004.

[13]TYO J S, ROWE M P, PUGH E N, et al. Target detection in optically scattering media by polarization-difference imaging. Applied Optics, 1996, 35(11):1855-1870.

[14]ZENG N, JIANG X Y, GAO Q, et al. Linear polarization difference imaging and its potential applications. Applied Optics, 2009, 48(35):6734-6739.

[15]NOTHDURFT R, YAO G. Expression of target optical properties in subsurface polarization-gated imaging. Optics Express, 2005, 13(11):4185-4195.

[16]SHI D F, HU S X, WANG Y J. Polarimetric ghost imaging. Optics Letters, 2014, 39(5):1231-1234.

[17]NI X H, ALFANO R R. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium. Optics Letters, 2004, 29(23):2773-2775.

[18]YAO G. Differential optical polarization imaging in turbid media with different embedded objects. Optics Communications, 2004, 241:255-261.

[19]SHUKLA P, SUMATHI R, GUPTA S, et al. Influence of size parameter and refractive index of the scatterer on polarization-gated optical imaging through turbid media. Journal of Optics Society American A, 2007, 24(6):1704-1713.

[20]SHUKLA P, PRADHAN A. Polarization-gated imaging in tissue phantoms:effect of size distribution. Applied Optics, 2009, 48(32):6099-6104.

[21]TIAN H, ZHU J P, TAN S W, et al. Influence of the particle size on polarization-based range-gated imaging in turbid media. AIP Advances, 2017, 7:095310.

[22]WANG X D, WANG L H V, SUN C W, et al. Polarized light propagation through scattering media:time-resolved Monte Carlo simulations and experiments. Journal of Biomedical Optics, 2003, 8(4):608-617.

[23]TIAN H, ZHU J P, TAN S W, et al. Polarization-based range-gated imaging in birefringent medium:effect of size parameter. Chinese Physics B, 2018, 27(12):124203.

[24]GHOSH N, PATEL H S, GUPTA P K. Depolarization of light in tissue phantoms-effect of a distribution in the size of scatterers. Optics Express, 2003, 11(18):2198-2205.

[25]LAAN VAN DER J D, WRIGHT J B, SCRYMGEOUR D A, et al. Evolution of circular and linear polarization in scattering environments. Optics Express, 2015, 23(25):31874-31888.

[26]SWAMI M K, MANHAS S, PATEL H, et al. Mueller matrix measurements on absorbing turbid medium. Applied Optics, 2010, 49(18):3458-3464. 

[27]WANG X D, WANG L H V. Propagation of polarized light in birefringent turbid media:a monte carlo study. Journal of Biomedical Optics, 2002, 7(3):279-290.  


不同散射介质中偏振差分成像质量研究


田  恒1, 吴业林1, 田晶晶1, 张  波1, 朱京平2


(1. 河南理工大学 物理与电子信息学院, 河南 焦作 454003; 2. 西安交通大学 陕西省信息光子重点实验室, 陕西 西安 710049)


摘  要:    为了明确浑浊介质双折射效应和散射体粒径对偏振差分成像质量的影响, 利用Monte Carlo模拟方法研究了在粒径尺寸不同的普通介质和双折射介质中线偏振光和圆偏振光入射时的偏振差分成像效果, 详细分析了双折射效应和散射体粒径对目标反射光与介质光退偏特性的影响, 并据此对偏振差分成像的图像对比度进行分析。 结果表明, 在普通介质中, 粒径尺寸是影响偏振光偏振特性的关键因素, 入射光偏振态对成像质量的影响与散射体粒径相关, 大粒径条件下利用圆偏振光能呈现出更佳的成像质量。 在双折射介质中, 双折射特性成为影响偏振光偏振特性的关键因素, 成像效果与散射体粒径无关, 入射光偏振态对成像质量起关键决定作用, 圆偏振光对应的成像效果优于线偏振光对应的成像效果。 基于双折射效应, 利用偏振差分成像在双折射介质中获得的成像质量优于普通介质中的成像质量。


关键词: 偏振成像; 目标检测; Monte Carlo模拟; 散射; 双折射效应  


引用格式:TIAN Heng, WU Yelin, TIAN Jingjing, et al. Comparative study of differential polarization imaging using linear and circular polarization in different scattering medium. Journal of Measurement Science and Instrumentation, 2022, 13(2):173-183. DOI:10.3969/j.issn.1674-8042.2022.02.006


[full text view]