此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Dynamic path planning strategy based on improved RRT* algorithm


SUO Chao, HE Lile


(College of Electrical & Mechanical Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China)


Abstract:In order to solve the problem of path planning of mobile robots in a dynamic environment, an improved rapidly-exploring random tree* (RRT*) algorithm is proposed in this paper. First, the target bias sampling is introduced to reduce the randomness of the RRT* algorithm, and then the initial path planning is carried out in a static environment. Secondly, apply the path in a dynamic environment, and use the initially planned path as the path cache. When a new obstacle appears in the path, the invalid path is clipped and the path is replanned. At this time, there is a certain probability to select the point in the path cache as the new node, so that the new path maintains the trend of the original path to a greater extent. Finally, MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms, respectively. More specifically, compared with the original RRT* algorithm, the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19% on average.


Key words:mobile robot; path planning; rapidly-exploring random tree* (RRT*) algorithm; dynamic environment; target bias sampling


References


[1]HUO F C, CHI J, HUANG Z J, et al. Review of path planning for mobile robots. Journal of Jilin University (Information Science Edition), 2018, 36(6): 639-647.

[2]SONG X R, REN Y Y, GAO S, et al. Survey on technology of mobile robot path planning. Computer Measurement & Control, 2019, 27(4): 1-5, 17.

[3]CHEN Q L, JIANG H Y, ZHENG Y J. Summary of rapidly-exploring random tree algorithm in robot path planning. Computer Engineering and Applications, 2019, 55(16): 10-17.

[4]CHOUDHURY S, GAMMELL J D, BARFOOT T D, et al. Regionally accelerated batch informed trees (RABIT*): a framework to integrate local information into optimal path planning//International Conference on Robotics and Automation, May 16-21, 2016, IEEE, Sweden, Stockholm. Washington: IEEE computer Society, 2016:  4207-4214.

[5]IRAM N, AMNA K, HYEJEONG R, et al. Optimal path planning in cluttered environment using RRT*-AB. Intelligent Service Robotics, 2018, 11(1): 41-52.

[6]WANG C, MENG M Q. Variant step size RRT:an efficient path planner for UAV in complex environments//International Conference on Real-Time Computing and Robotics, Jun. 6-10, 2016, IEEE, Angkor Wat, Cambodia. Washington: IEEE Computer Society, 2016: 555-560.

[7]HYEJEONG R, YOUNGHOON P. Improved informed RRT* using grid map skeletonization for mobile robot path planning. International Journal of Precision Engineering and Manufacturing, 2019, 20(11): 2033-2039.

[8]SHIARLIS K, MESSIAS J, WHITESON S. Rapidly exploring learning trees//International Conference on Robotics and Automation, May 29-Jun. 3, 2017, IEEE, Singapore. Washington: IEEE Computer Society, 2017: 541-548.

[9]ICHTER B, HARRISON J, PAVONE M. Learning sampling distributions for robot motion planning//International Conference on Robotics and Automation, May 21-25, 2018, IEEE, Brisbane, Australia. Washington: IEEE Computer Society, 2018: 7087-7094.

[10]KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 2010, 30(7): 846-894.

[11]FERGUSON D, KALRA N, STENTZ A. Replanning with RRTs//International Conference on Robotics and Automation, May 15-19, 2006, IEEE, Orlando, Florida, USA. Washington: IEEE Computer Society, 2006: 1243-1248.

[12]LAVALLE S M, KUFFNER J J J. Randomized kinodynamic planning. International Journal of Robotics & Research, 1999, 15(5): 378-400.

[13]LIU C J, HAN J Q, AN K. Dynamic path planning based on an improved RRT algorithm for RoboCup robot. Robot, 2017, 39(1):8-15  




基于改进RRT*算法的动态路径规划策略


索  超, 贺利乐


(西安建筑科技大学 机电工程学院, 陕西 西安 710055)


摘  要:    为了进一步解决移动机器人在动态环境下的路径规划问题, 提出了一种改进的快速扩展随机树*(RRT*)算法。 首先, 引入目标偏置采样以降低RRT*算法的随机性, 在静态环境下进行路径初规划。 其次, 在动态环境下应用该路径, 并将初规划的路径作为路径缓存, 当路径中出现新障碍物时, 将无效路径进行裁剪并进行路径重规划, 此时在进行节点采样时, 有一定概率选择路径缓存中的点作为新节点, 使得新路径更大程度上保持原有路径的趋势。 最后, 使用MATLAB分别进行初规划、 重规划的仿真实验。 与传统RRT*算法进行了对比, 新的改进算法使用的节点数量平均减少了43.19%。 


关键词: 移动机器人; 路径规划; RRT*算法; 动态环境; 目标偏置采样  


引用格式:SUO Chao, HE Lile. Dynamic path planning strategy based on improved RRT* algorithm. Journal of Measurement Science and Instrumentation, 2022, 13(2):198-208. DOI:10.3969/j.issn.1674-8042.2022.02.009


[full text view]