此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

A GPS/BDS dualmode positioning algorithm for a train based on CIPSO_EKF


LUO Miao1,2, DANG Jianwu1



(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Institute of Railway Technology, Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract:  When using global positioning system/BeiDou navigation satellite (GPS/BDS) dualmode navigation system to locate a train, Kalman filter that is used to calculate train position has to be adjusted according to the features of the dualmode observation. Due to multipath effect, positioning accuracy of present Kalman filter algorithm is really low. To solve this problem, a chaotic immunevaccine particle swarm optimization_extended Kalman filter (CIPSO_EKF) algorithm is proposed to improve the output accuracy of the Kalman filter. By chaotic mapping and immunization, the particle swarm algorithm is first optimized, and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix. The optimal parameters are provided to the EKF, which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy. At the same time, the train positioning results of EKF and CIPSO_EKF algorithms are compared. The eastward position errors  and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher realtime performance, which can effectively suppress interference and improve positioning accuracy.



Key words: global positioning system/BeiDou navigation satellite (GPS/BDS) dualmode positioning; chaotic immunevaccine particle swarm optimization (CIPSO); extended Kalman filter (EKF); positioning accuracy


References


[1]ZHAO S, GUI X, GUAN F, et al. A Kalman filterbased short baseline RTK algorithm for single frequency combination of GPS and BDS. Sensors, 2014, 14(8): 1541515433.

[2]LI W D, JIA H M, FENG X Y. Train location based on Extended Kalman filter. Journal of Dalian Jiaotong University, 2015, 36(6): 102106.

[3]LIANG L K, ZHANG L Y, HE W C, et al. Probabilistic neural network multimodel Kalman filter navigation algorithm. Measurement Control Technology and Instrument, 2018, 44(6): 6067.

[4]CHEN G W, LIU H, LI S Y,et al. A novel method based on dynamic modle correction on train integrated navigation positioning. Acta Automatica Sinica, 2019, 45(12): 22812293.

[5]WEI H R, LIU R J, ZHAO C S, et al. Research on integrated navigation system of intelligent tractor based on EKF. Tractor & Farm Transporter, 2020, 47(1): 1721.

[6]HU C Y, PEI B N, PEI T D, et al. Localization algorithm for improving EKF dualmode navigation system. Information Technology, 2019, 4(1): 15.

[7]YANG J H, LI W Y, CHEN G W,et al. GPS/INS integrated navigation filter method based on sliding mode observer. Chinese Journal of Scientific Instrument, 2019, 40(9): 7886.

[8]ZHANG X, ZUO X, LI P, et al. Convergence time and positioning accuracy comparision between BDS and GPS precise point positioning. Acta Geodaetica Et Cartographica Sinica, 2015, 44(3): 250256.

[9]ZHAO Y Z. Positioning of high earth orbit satellite using GPS/Beidou combined system. Journal of Space Science, 2016, 36(1): 7782.

[10]CAO H J, LIU Y. Research on signal tracking algorithm in Beidou/GPS pseudo satellite positioning system. Computer Technology and Development, 2017, 27(9): 179186.

[11]TANG W M, XU K, JIN L, et al. Beidou/GPS combined pseudorange singlepoint positioning performance test and analysis. Geomatics and Information Science of Wuhan University, 2015, 40(4): 530533.

[12]LING T. Research and implementation for vehicle tracking terminal system based on Beidou II/GPS. Computer Knowledge and Technology, 2017, 13(16): 189192.

[13]WANG C X, XU A G, GE M R, et al. Algorithm implementation of precision point positioning for GPS/BDS combination. Journal of Navigation and Positioning, 2018, 6(1): 6775.

[14]ZHANG X, WANG F, GUO F. Performance enhancement for GPS positioning using constrained Kalman filtering. Measurement Science & Map Technology, 2015, 26(8): 085020. 

[15]GONG C H, MAO X C, LI S Y. GPSBDS positioning research based on nonlinear filtering algorithm. Computer Simulation, 2015, 32(3): 4853.

[16]WANG X, ZUO Q Y, HONG S P, et al. A novel evaluation method of positioning resolution performance based on Kalman filtering. Navigation Positioning and Timing, 2018, 5(5): 7382.

[17]SARKER R A, ELSAYED S M, RAY T. Differential evolution with dynamic parameters selection for optimization problerms. IEEE Transaction on Evolution Computation, 2014, 18(5): 689707.

[18]XIANG Y, MA X J, LIU C G, et al. Estimation of modle parameters and SOC of lithium batteries based on IPSOEKF. Acta Armamentarii, 2014, 35(4): 16591666.

[19]XU X B, JIANG Q Q, ZHENG K F. IDS alert clustering algorithm based on Chaotic particle swarm optimization. Journal of Communications, 2013, 34(3): 105111.


基于CIPSO_EKF的GPS/BDS双模列车定位算法研究


罗淼1,2, 党建武1


(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 铁道技术学院, 甘肃 兰州 730070)


摘要:使用全球定系统/北斗卫星导航(Global positioning system/BeiDou navigation satellite system, GPS/BDS)双模导航系统定位列车时, 根据双模观测量的特点, 若卡尔曼滤波方法对列车位置解算, 需对算法进行相应的调整; 并且受多径效应影响, 传统卡尔曼滤波算法的定位精度较低。 针对这些问题, 提出了混浊免疫粒子群优化算法以提高卡尔曼滤波输出精度。 首先, 利用混沌映射及免疫接种方法, 对粒子群算法进行优化, 再用优化后的粒子群算法对观测误差协方差矩阵寻优。 然后, 将最优参数提供给扩展卡尔曼滤波器, 可有效减小因多径效应引起的观测值震荡对定位精度的影响。 最后, 通过实验验证并比较分析了采用EKF和CIPSO_EKF两种算法的列车定位结果。 从北向、 东向的位置、 速度定位误差结果可以看出, CIPSO_EKF算法收敛速度更快, 实时性更高, 能有效抑制干扰, 提高定位精度。 


关键词:全球定位系统/北斗卫星导航双模定位; 混浊免疫粒子群优化算法; 扩展卡尔曼滤波器; 定位精度


引用格式:LUO Miao, DANG Jianwu. A GPS/BDS dualmode positioning algorithm for a train based on CIPSO_EKF. Journal of Measurement Science and Instrumentation, 2022, 13(1): 1220. DOI: 10.3969/j.issn.16748042.2022.01.002


[full text view]