此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

NonPLL highprecision synchronous sampling method among lots of acoustics acquisition channels for underwater multilinear array seismic exploration system


JIANG Jiajia1, CUI Jindong1, WANG Xianquan1, LI Xiaodong2, ZENG Xianjun3,ZHOU Dasen3, YAO Qingwang1, DUAN Fajie1, FU Xiao1


(1. State Key Lab of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China; 2. Beijing Dynamic GeoSolutions Co. Ltd., Beijing 100107, China; 3. Guangzhou Marine Geological Survey, Guangzhou 510075, China)


Abstract: Synchronous sampling is very essential in underwater multilinear array seismic exploration system in which every acquisition node (AN) samples analog signals by its own analogdigital converter (ADC). Aiming at the problems of complex synchronous sampling method and long locking time after varying sampling rate in traditional underwater seismic exploration system, an improved synchronous sampling model based on the masterslave synchronous model and local clock asynchronous drive with non phase locked loop (PLL) is built, and a highprecision synchronous sampling method is proposed, which combines the shortterm stability of local asynchronous driving clock with the masterslave synchronous calibration of local sampling clock. Based on the improved synchronous sampling model, the influence of clock stability, transmission delay and phase jitter on synchronous sampling error is analyzed, and a highprecision calibration method of synchronous sampling error based on stepbystep compensation of transmission delay is proposed. The model and method effectively realize the immunity of phase jitter on synchronous sampling error in principle, and compensate the influence of signal transmission delay on synchronous sampling error. At the same time, it greatly reduces the complexity of software and hardware implementation of synchronous sampling, and solves the problem of long locking time after changing the sampling rate in traditional methods. The experimental system of synchronous sampling for dual linear array is built, and the synchronous sampling accuracy is better than 5 ns.


Key words: seismic exploration system; synchronous sampling; non phase locked loop  (PLL); local clock asynchronous drive; transmission delay


References


[1]AMOR S B, AFFES S, BELLILIi F, et al. Multinode ML time and frequency synchronization for distributed MIMOrelay beamforming over timevarying flatfading channels. IEEE Transactions on Communications, 2019, 67(4): 27022715.

[2]KAVOOSI V, DEHGHANI M J, JAVIDAN R. Underwater acoustic source positioning by isotropic and vector hydrophone combination. Journal of Sound and Vibration, 2021, 501(14): 116031.

[3]DAGNINO D, SALLARES V, RANERO C R. Waveformpreserving processing flow of multichannel seismic reflection data for adjointstate fullwaveform inversion of ocean thermohaline structure. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 16151625.

[4]HUANG G, CHEN X, LUO C, et al. Timelapse seismic differenceandjoint prestack AVA inversion. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 91329143.

[5]TOLLEFSEN s, WILMUT M J, CHAPMAN R. Estimates of geoacoustic model parameters from inversions of horizontal and vertical line array data. IEEE Journal of Oceanic Engineering, 2005, 30(4): 764772.

[6]WONG K T. A lower bound of DOAestimates by an array randomly subject to sensorbreakdown. IEEE Sensors Journal, 2012, 12(5): 911913.

[7]GONNOUNI A E, MARTINEZRAMON M, ROJOALVAREZ J L, et al. A support vector machine MUSIC algorithm. IEEE Transactions on Antennas & Propagation, 2012, 60(10): 49014910.

[8]WANG X, ZHU J, CHENG Z. Synchronization reachable topology and synchronization of discretetime linear multiagent systems. IEEE Transactions on Automatic Control, 2015, 60(7): 19271932.

[9]LUO R, HUA N, ZHENG X, et al. Highreliability subnanosecond network time synchronization method enabled by doublefrequency distributed time synchronization. IEEE/OSA Journal of Optical Communications & Networking, 2019, 11(1): 4051.

[10]SHUAI L, LU Y, JI Y. An enhanced IEEE 1588 time synchronization for asymmetric communication link in packet transport network. IEEE Communications Letters, 2010, 14(8): 764766.

[11]GUO H, CROSSLEY P. Design of a time synchronization system based on GPS and IEEE 1588 for transmission substations. IEEE Transactions on Power Delivery, 2016, 32(4): 20912100.

[12]NGUYEN V Q, NGUYEN T H, JEON J W. An adaptive fuzzyPI clock servo based on IEEE 1588 for improving time synchronization over ethernet networks. IEEE Access, 2020, 8: 6137061383.

[13]ARCEOMIQUEL L, SHMALIY Y S, IBARRAMANZANO O. Optimal synchronization of local clocks by GPS 1PPS signals using predictive FIR filters. IEEE Transactions on Instrumentation & Measurement, 2009, 58(6): 18331840.

[14]WANG W Q. GPSbased time & phase synchronization processing for distributed SA. IEEE Transactions on Aerospace & Electronic Systems, 2009, 45(3): 10401051.

[15]SKOG I, HANDEL P. Time synchronization errors in loosely coupled GPSaided inertial navigation systems. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 10141023.

[16]CAO P, SONG K Z, YANG J F, et al. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network. Journal of Geophysics & Engineering, 2011, 8(1): 2734.

[17]JIANG J J, DUAN F J, LI Y C, et al. Synchronization sampling method based on deltasigma analogdigital converter for underwater towed array system. Review of Scientific Instruments, 2014, 85(3): 4162.

[18]LI Y C, DUAN F J. Underwater acoustic sensor array based on variable sampling rates and high precision synchronization. Sensors and Actuators A: Physical, 2016, 242: 99105.

[19]KOSYHK A V, IONOV B P. Dynamic temperature model and dynamic temperature compensation of crystal oscillators. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2002, 41(3): 370374.



水下多线阵地震勘探系统多声学通道的非锁相环高精度同步采样方法


蒋佳佳1, 崔锦东1, 王宪全1, 李晓东2, 曾宪军3, 周大森3, 姚庆旺1, 段发阶1, 傅骁1


(1. 天津大学 精密测量技术与仪器国家重点实验室, 天津 300072;2. 北京西曼吉奥能源技术有限公司, 北京 100107; 

3. 广州海洋地质调查局, 广东 广州 510075)


摘要:在水下多线阵地震勘探系统中, 同步采样非常重要。 针对传统水下多线阵地震勘探系统同步采样方法复杂, 变采样率后锁定时间长等问题, 构建了一种基于主从同步模型的非锁相环本地时钟异步驱动的高精度同步采样改进模型, 提出了利用采集节点本地异步驱动时钟短时稳定性与本地采样时钟主从同步校准相结合的高精度同步采样方法。 基于同步采样改进模型, 分析了时钟稳定性、 传输延时、 相位抖动等因素对同步采样误差的影响规律, 并据此提出了传输延时逐级补偿的同步采样误差高精度校准方法。 所建构模型及方法从原理上有效消除了相位抖动对同步采样误差的影响, 有效补偿了信号传输延时对同步采样误差的影响, 同时大大简化了同步采样的软硬件实现难度, 解决了传统方法变采样率后锁定时间长的问题。 利用搭建了双线阵阵列同步采样实验系统进行验证, 达到了优于5 ns的同步采样精度。 


关键词:地震勘探系统; 同步采样; 非锁相环; 本地时钟异步驱动; 传输延时


引用格式:JIANG Jiajia, CUI Jindong, WANG Xianquan, et al. NonPLL highprecision synchronous sampling method among lots of acoustics acquisition channels for underwater multilinear array seismic exploration system. Journal of Measurement Science and Instrumentation, 2022, 13(1): 4150. DOI: 10.3969/j.issn.16748042.2022.01.005


[full text view]