此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Thermal kinetic and thermal safety of Shuangfang-3 gun propellant based on thermal decomposition characteristics


ZHAO Yuxin, TAN Yingxin, MA Jiangeng, ZHANG Huarong, LIU Haihong, GUO Jiaxin


(School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)


Abstract: Differential scanning calorimetry (DSC) was used to investigate the thermal decomposition and thermal safety characteristics of Shuangfang3(SF3) gun propellant. The kinetic calculation of the DSC curve was carried out by Kissinger and Friedman models, and the time to the maximum rate under adiabatic conditions and the selfaccelerating decomposition temperature were calculated by using the AKTS thermal analysis software in combination with the heat balance equation. The thermal history experiment was carried out to further analyze the autocatalytic properties of SF3. The results show that the initial decomposition temperature, decomposition peak temperature, and decomposition completion temperature of SF3 all move to the high temperature direction with the increase of heating rate, and the average decomposition heat is 1 521.4 J/g. The kinetic model showcased that SF3 has different reactions in different reaction stages, and its apparent activation energy is 168.2 kJ/mol. When the times to maximum rate under adiabatic conditions are 2.0 h, 4.0 h, 8.0 h, 24.0 h, respectively, the corresponding temperatures are 130.7 ℃, 124.8 ℃, 119.2 ℃ and 110.5 ℃, respectively. When the masses are 5.0 kg, 15.0 kg, 25.0 kg, 50.0 kg, 100.0 kg, respectively, the corresponding selfaccelerating decomposition temperatures are 110.0 ℃, 105.0 ℃, 102.0 ℃, 99.0 ℃ and 96.0 ℃, respectively. As the packaging mass increases, it is more difficult to exchange the liberated heat into the surrounding environment and its safety would be further reduced. The thermal history experiment demonstrates that the thermal decomposition of SF3 is an nstage reaction and does not have autocatalytic properties. Therefore, the size and ventilation conditions of the sample have a certain impact on the storage stability of SF3. In the actual production, usage, storage and transportation, sample size and ventilation conditions should be controlled, and practical and effective measures should be taken according to the actual situation.


Key words: explosive; thermal decomposition; autocatalytic properties; doublebase propellant


References


[1]QI L, WU Z Y, WU B H. Development and prospect of doublebase propellant. New Chemical Materials, 2015, 43(5): 2224.

[2]LI X Y, LIU X G, CHENG Y, et al. Thermal decomposition properties of doublebase propellant and ammonium perchlorate. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 887894. 

[3]SUN S X, MA S, ZHAO B B, et al. A facile way to prolong service life of double base propellant. MAterials, 2018, 11(11): 2236.

[4]TAN D, WEI X, ZHANG D, et al. Process optimization of supercritical CO2 foamed SF3 doublebase propellant. Propellants Explosives Pyrotechnics, 2020, 45(1): 2025.

[5]WEI X, ZHANG D, CHEN F, et al. Research on perfusion explosives from SF3 doublebase propellants using supercritical CO2. Propellants Explosives Pyrotechnics, 2016, 41(4): 740745.

[6]SHERIF E, MOSTAFA R, AHMED F, et al. Novel aspects for thermal stability studies and shelf life assessment of modified doublebase propellants. Defence Technology, 2019, 15(3): 300305.

[7]WU W, YANG Y, CHEN J, et al. Nitroglycerine migration to polyurethane used for inhibition of doublebase propellants through thermal analysis techniques. Journal of Thermal Analysis and Calorimetry, 2016, 125(2): 881886.

[8]LIU R, ZHANG T L, YANG L, et al. Dynamic pressure thermal analysis of doublebase propellants containing RDX. Central European Journal of Chemistry, 2014, 12(6): 672677.

[9]ZHANG J, XUE B B, RAO G N, et al. Thermal decomposition characteristic and kinetics of DINA. Journal of Thermal Analysis & Calorimetry, 2018, 133(1): 727735.

[10]POURMORTAZAVI S M, MIRZAJANI V, FARHADI K, et al. Thermal behavior and thermokinetic of doublebase propellant catalyzed with magnesium oxide nanoparticles. Journal of Thermal Analysis & Calorimetry, 2019, 137(1): 93104. 

[11]CHEN C, LU G E, JIANG J Y, et al. Wang. Experimental research on the thermal safety of SF3 gun propellant. Chinese Journal of Explosives & Propellants, 2014, 37(3): 7073.

[12]KOU Y F, CHEN L, LU J Y, et al. Assessing the thermal safety of solid propellant charges based on slow cookoff tests and numerical simulations. Combustion and Flame, 2021, 228: 154162.

[13]YANG T, CHEN L P, CHEN W H, et al. Thermal stability of 2ethylhexyl nitrate with acid. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 205212.

[14]KISSINGER H E. Variation of peak temperature withheating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 1956, 57: 217221.

[15]FRIEDMAN H L. Kinetics of thermal degradation of charforming plastics from thermogravimetry application to a phenolic plastic. Journal of Polymer Science Part C: Polymic Symposia, 1964, 6(1): 183195.

[16]RODUIT B, FOLLY, P. SARBACH, et al. Eestinmation of TMRad using kinetics parameters derived from DSC investigation of thermal behavior of 3methy4nitrophenol. Chemical Propellants & Polymeric MAterials, 2011, 9: 8496.

[17]JIA M, GUO S, GAO S, et al. Thermal decomposition mechanism of diisopropyl azodicarboxylate and its thermal hazard assessment. Thermochimica Acta, 2020, 688: 178601.

[18]CAO C R, LIU S H, CHI J H, et al. Using thermal analysis and kinetics calculation method to assess the thermal stability of azobisdimethylvaleronitrile. Journal of Thermal Analysis and Calorimetry, 2019, 138(4) : 28532863.

[19]SOVIZI M R, FAKHRPOUR G, MADRAM A R. Comparison of thermal degradation behavior of epoxy/ammonium perchlorate composite propellants. Journal of Thermal Analysis and Calorimetry.2017, 129(1): 401410.

[20]XU Y B, TAN Y X, CAO W G, et al. Thermal decomposition characteristics and thermal safety of dihydroxylammonium 5, 5′bistetrazole1, 1′diolate based on microcalorimetric experiment and decoupling method. The Journal of Physical Chemistry, 2020, 124(11): 59875998.

[21]WANG H Y, ZHANG H, HU R Z, et al. Estimation of the critical rate of temperature rise for thermal explosion of nitrocellulose/ using nonisothermal DSC. Journal of Thermal Analysis and Calorimetry, 2014, 115(2): 10991110.


基于热分解特性的SF3的热动力学和热安全性研究


赵玉鑫, 谭迎新, 马健耕, 张华荣, 刘海红, 郭家鑫


(中北大学 环境与安全工程学院, 山西 太原 030051)


摘要:采用差示扫描量热仪(Differential scanning calorimetry, DSC)对双芳3(Shuangfang3, SF3)发射药进行线性升温实验, 其热分解特性和热安全特性。 通过Kissinger和Friedman模型对DSC曲线进行动力学计算, 并结合热平衡方程利用AKTS热分析软件计算其绝热诱导期及自加速分解温度。 运用热履历实验进一步分析了双芳3的自催化特性。 结果表明, 双芳3的初始分解温度、 最高分解温度、 分解完成温度均随着升温速率的增加而向高温方向移动, 平均分解热为1 521.4 J·g-1。 动力学模型表明, 双芳3在不同反应阶段中具有不同反应, 其表观活化能为168.2 kJ·mol-1。 当绝热诱导期为2.0 h, 4.0 h, 8.0 h, 24.0 h时, 相对应的温度分别为130.7 ℃, 124.8 ℃, 119.2 ℃和110.5 ℃。 当质量分别取5.0 kg, 15.0 kg, 25.0 kg, 50.0 kg, 100.0 kg时, 自加速分解温度分别为110.0 ℃, 105.0 ℃, 102.0 ℃, 99.0 ℃和96.0 ℃。 随着包装质量的增加, 分解放出的热量交换到周围环境中的难度就会增大, 其安全性也进一步降低。 热履历实验表明, 双芳3的热分解为n级反应, 不具有自催化特性。 因此, 样品的尺寸及通风条件对双芳3的储存稳定性具有一定影响, 在实际生产、 使用、 贮存和运输等过程中, 应控制样品的尺寸及通风条件, 并根据实际情况采取切实有效的降温措施。 

关键词:炸药; 热分解; 自催化特性; 双基发射药


引用格式:ZHAO Yuxin, TAN Yingxin, MA Jiangeng, et al. Thermal kinetic and thermal safety of Shuangfang3 gun propellant based on thermal decomposition characteristics. Journal of Measurement Science and Instrumentation, 2022, 13(1): 115121. DOI: 10.3969/j.issn.16748042.2022.01.013


[full text view]