此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Experimental study on explosion limit of M15 methanol-gasoline mixture


TAN Yingxin1, SUN Yanlong1, ZHANG Huarong1, LIU Haihong1, RAO Yonghong2


(1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;2. PLA Unit 32382, Beijing 100072, China)


Abstract: The explosion characteristics of M15 methanol-gasoline mixture was experimental test by using FRTA explosion limit instrument. The effect of temperature on the explosion area of the sample was studied. The results show that the lower explosion limit of M15 methanol-gasoline mixture is 1.716% and the upper explosion limit is 11.451% at the initial temperature of 80  ℃. The lower explosion limit of M15 methanol-gasoline is in the range of 1.711%-1.760% with the initial temperature from 25 ℃ to 100 ℃, and the upper explosion limit of the sample changes between 11.253% and 11.451%. Considering experimental error and precision, it can be approximated that the temperature has little influence on the explosion area of M15 methanol-gasoline mixture.


Key words: M15 methanol-gasoline mixture; explosion limits; vapor explosion; gas explosion



References


[1]Liu Z Y, Li H, Xing J, et al. Explosion limits and critical oxygen content of crude oil vapor at different ambient temperatures. Journal of Chemical Industry and Engineering (China), 2011, 62(7): 1998-2004.

[2]Yao G B, Xie L F, Liu J C, et al. Experimental study on explosion limits and suppression of combustible liquid. Chinese Journal of Energetic Materials, 2010, 18(4): 439-442.

[3]Chen W B. Application of explosion limit in safety management of oil depots. Depot and Gas Station, 2007, 16(5): 22-23.

[4]Liu W H, Jiang X S, Zhou J Z, et al. Simulation experimental system for explosion limit measurement of gasoline-air mixture under different environmental conditions. Journal of Logistical Engineering University, 2013, 29(6): 24-29.

[5]Kasparov A A, Shirokov Y G, Golovkova N P. Study of health hazards in use of methanol-gasoline mixtures. Chemistry and Technology of Fuels and Oils, 1986, 21(11):  601-603.

[6]Shen Y H. Methanol gasoline development in foreign countries and enlightenment to China. Sino-Global Energy, 2010, 15(12): 23-28.

[7]Ni P Y, Wang Z, Wang X L, et al. Regulated and unregulated emissions from a non-road small gasoline engine fueled with gasoline and methanol-gasoline mixtures. Energy Sources, Part A:  Recovery, Utilization, and Environmental Effects, 2014, 36(14):  1499-1506.

[8]Liang W. Research & applications of methanol gasoline. Sino-Global Energy, 2006, 11(2):  95-100.

[9]Liu H, Wang Z, Wang J X. Methanol-gasoline DFSI (dual-fuel spark ignition) combustion with dual-injection for engine knock suppression. Energy, 2014, 73(9):  686-693.

[10]Mullen R K. Methanol-gasoline fuels. Science, 1975, 188(4185): 209-211.

[11]ASTM E681-2009, Standard test method for concentration limits of flammability of chemicals (vapors and gases). United States.

[12]GB/T 12474-2008, Method of test for explosion limits of combustible gases in air. Beijing: Standards Press of China, 2008-06-26[2020-09-25].

[13]Tan Y X, Xie Y Y, Huo Y J, et al. Effect of turbulence on flame propagation process of ethanol vapor approached lower explosion limit. Journal of North University of China (Natural Science Edition). 2018, 39(1): 89-92.

[14]Xie Y Y, Tan Y X, Sun Y L. Spontaneous ignition temperature and the explosion maximum limit of the ethanol-gasoline blends. Journal of Safety and Environment, 2017, 17(2): 541-545. 

[15]Zhang Y. A study on the explosion characteristics and suppression experiment of 93# gasoline vapor. Taiyuan:  North University of China, 2014.

[16]Schoor F V, Verplaetsen F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures. Journal of Hazardous Materials, 2005, 128(1):  1-9.

[17]Li J B, Liang D, Chen Z Z. The research on combustible gas lower limit of explosion expanding in high temperature. Procedia Engineering, 2011, 11:  216-225.

[18]Razus D, Brinzea V, Mitu M, et al. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations. Journal of Hazardous Materials, 2010, 174(1):  548-555.

[19]Norman F, Schoor F V, Verplaetsen F. Auto-ignition and upper explosion limit of rich propane-air mixtures at elevated pressures. Journal of Hazardous Materials, 2006, 137(2):  666-671.

[20]Li Y C, Du Y, Liang J J, et al. Effects of environment temperature on the lower explosive limit of gasoline-air mixture. Journal of Logistical Engineering University, 2013, 29(2): 30-34.

[21]Yao J, Jiang C J, Pan Y. The effect of initial temperature on lower explosion limit of flammable gas. Industrial Safety and Environmental Protection, 2012, 38(2): 48-50.


M15甲醇-汽油混合物爆炸极限的试验研究


谭迎新1, 孙彦龙1, 张华荣1, 刘海红1, 饶永红2


(1. 中北大学 环境与安全工程学院, 山西 太原 030051;2. 中国人民解放军32382部队, 北京 100072)


摘要:利用FRTA爆炸极限仪测定了M15甲醇-汽油混合物的爆炸特性。 通过试验研究了温度对M15甲醇-汽油混合物爆炸范围的影响。 研究结果表明, 在初始温度为80 ℃时, M15甲醇-汽油混合物的爆炸下限为1.716%, 爆炸上限为11.451%。 当温度变化范围为25 ℃-100 ℃时, M15甲醇-汽油混合物的爆炸下限范围为1.711%-1.760%, 爆炸上限的范围为11.253%-11.451%。 基于合理的试验误差可知, 温度对M15甲醇-汽油混合物的爆炸范围影响较小。 


关键词:M15甲醇-汽油混合物; 爆炸极限; 蒸气爆炸; 气体爆炸


引用格式:TAN Yingxin, SUN Yanlong, ZHANG Huarong, et al. Experimental study on explosion limit of M15 methanol-gasoline mixture. Journal of Measurement Science and Instrumentation, 2021, 12(4): 390-395. DOI: 10.3969/j.issn.1674-8042.2021.04.002



[full text view]