ZHANG Bin1, WU Xiaoliang1, YANG Jianfeng1,2, YANG Ping1, SUN Xuewei1
(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Key Laboratory of Optoelectronic Technology and Intelligent Control of the Ministry of Education,
Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor (PMSM) for electric vehicles has low control performance, a novel adaptive non-singular fast terminal sliding mode control (ANFTSMC) model predictive torque control (MPTC) strategy is proposed. A new adaptive exponential approach rate is designed, and the traditional switching function sgn() is replaced by the hyperbolic tangent function tanh(). A new ANFTSMC with extended state observer (ESO) is constructed as the speed regulator of the system, and ESO can observe disturbances. This improved method weakens chattering and improves the robustness of the system. To realize sensorless control of the speed control system, an ESO speed observer based on tanh(Fal) is constructed. Compared with the traditional ESO based on Fal function, the observation error is smaller, and the observation accuracy is higher. Finally, aiming at the model predictive torque control strategy used, a new objective function construction method is proposed, which avoids the design of weight coefficient, and the traditional voltage vector selection method is improved and optimized, which reduces the calculation amount of the algorithm.
Key words: permanent magnet synchronous motors (PMSM); adaptive fast non-singular terminal sliding mode control (ANFTSMC); extended state observer (ESO); model predictive torque control (MPTC)
References
[1]Wei J, Li Z Z, Tian H B. Control and compensation strategy of circulating ball electric power steering system. Computer Engineering and Science, 2020, 42(1): 138-143.
[2]Zhou Z Q, Xia C L, Chen W, et al. Improved predictive torque control of permanent magnet synchronous motor with parameter robustness. Journal of Electrical Technology, 2018, 33(5): 965-972.
[3]Pan F, Yan G L, Yuan W H, et al. Direct torque control of permanent magnet synchronous motor based on double sliding mode. Journal of Electrical Technology, 2018, 33(S2): 427-433.
[4]Xia C L, Zhang T Y, Zhou Z Q, et al. Model predictive torque control of permanent magnet synchronous motor with three-level inverter combined with switch table. Journal of Electrical Technology, 2016, 31(20): 83-92+110.
[5]Wang X L, Xu Z L. Research on speed control of switched reluctance motor based on PI parameter adaptive control. Chinese Journal of Electrical Engineering, 2015, 35(16): 4215-4223.
[6]Niu F, Han Z D, Huang X Y, et al. Predictive flux control of permanent magnet synchronous motor model. Journal of Motor and Control, 2019, 23(3): 34-41.
[7]Zhang Y C, Yang H T, Wei X L. Model predictive control of permanent magnet synchronous motor based on fast vector selection. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73.
[8]Teng Q F, Bai J Y, Zhu J G, et al. Model predictive torque control of three-phase permanent magnet synchronous motor without speed sensor based on sliding mode model reference adaptive observer. Control Theory and Application, 2015, 32(2): 150-161.
[9]Xiang F, Xu M Z. Direct thrust control of permanent magnet linear synchronous motor without speed sensor based on MRAS and flux compensation. Motor and Control Application, 2019, 46(8): 18-23+58.
[10]Wang D Z, Li W Y, Yuan T Q, et al. Rotor position estimation of permanent magnet synchronous motor based on high frequency signal injection. Journal of Northeast University (Natual Science Edition), 2019, 40(9): 1234-1239.
[11]Zhang L W, Li X, Song P P, et al. Sensorless vector control system of permanent magnet synchronous motor based on new sliding mode observer. Journal of Electrical Technology, 2019, 34 (S1): 70-78.
[12]Zhou T. Extended state observer based on anti hyperbolic sine function. Control and Decision, 2015, 30(5): 943-946.
[13]Xu W Q, Zhang B, Wen X. Sensorless fcs-mpc driven by three-phase eight switch fault-tolerant inverter based on fractional order sliding mode observer. Control Theory and Application, 2018, 35(7): 1037-1049.
[14]Wei H F, Wei H P, Zhang Y. PWM current predictive control of permanent magnet synchronous motor based on extended state observer. Control and Decision, 2018, 33(2): 351-355.
[15]Yu H G, Kang Z J, Chen Y. Second order time-varying parameter extended state observer based on hyperbolic tangent function. Control Theory and Application, 2016, 33(4): 530-534.
[16]Xie W, Wang X, Wang F, et al. Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5402-5410.
[17]Hou Y L. Research on Robust Predictive Speed Control Strategy of Permanent Magnet Synchronous Motor. Xi’an: Xi’an University of Technology, 2019.
[18]Miao Z C, Li D L, Wang Z H, et al. Field-weakening control system of induction motor based on model prediction. Journal of Measurement Science and Instrumentation, 2021, 12(3): 314-321.
[19]Zhang X Y. Model predictive torque control of induction motor based on deadbeat control. Hangzhou: Zhejiang University, 2019.
带ESO的ANFTSMC控制PMSM的新型MPTC无传感器控制策略
张斌1, 吴晓亮1, 杨剑锋1,2, 杨萍1, 孙学伟1
(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070)
摘要:针对电动汽车中永磁同步电机传统控制策略对电机控制性能差的问题, 提出了一种新型的自适应非奇异快速终端滑模模型预测转矩控制策略。 设计了新型自适应指数趋近率, 用性质更佳的双曲正切函数tanh()替换传统的切换函数sgn(), 并构造了带ESO扰动观测的新型ANFTSMC作为系统转速控制器, 消弱了抖振, 提高了系统鲁棒性。 为实现调速系统的无传感器控制, 构造了基于tanh(Fal)的ESO转速观测器。 与传统基于Fal函数的ESO相比, 观测误差较小, 观测精度较高。 同时, 针对预测转矩控制策略, 提出了新型的目标函数构造方法, 避免了权重系数的设计, 并对传统电压矢量选择方法进行了改进与优化, 减少了算法的计算量, 结合所设计的新型控制器可有效提高系统的快速性, 增加算法的实用性。
关键词:永磁同步电机; 非奇异终端滑模控制; 扩张状态观测器; 模型预测转矩控制
引用格式:ZHANG Bin, WU Xiaoliang, YANG Jianfeng, et al. A novel MPTC sensorless control strategy for ANFTSMC with ESO to control PMSM. Journal of Measurement Science and Instrumentation, 2021, 12(4): 449-462. DOI: 10.3969/j.issn.1674-8042.2021.04.009
[full text view]