此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Design of deep-water omnidirectional spirit leve

lZHAO Lianyu1,  LI Shuo1, ZHAO Xiaolei2, LI Maolin2, CHEN Jinyu2, WANG Chenglin1


(1. Tianjin Key Laboratory of Advanced Mechatronic System Design and Intelligent Control; National Demonstration Center of Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China; 2. Offshore Oil Engineering Co., Ltd., Tianjin 300461, China)


Abstract: Attitude adjustment is a key link in the installation process of underwater facilities in deep water. To solve this problem, an omnidirectional spirit level for deep water was developed. The sealing principle of the spirit level and the principle of deep-water pressure resistance are analyzed, and the threaded connection strength is checked. The mechanical simulation verifies that the spirit level can withstand the pressure of 2 000 m water depth, and the water pressure test is carried out for 30 min in a 20 MPa hyperbaric chamber. After the experiment is completed, the appearance of the spirit level is intact and there is no leakage. The experiment results show that the deep-water omnidirectional spirit level can be used in the deep sea within 2 000 m.


Key words: deep water omnidirectional spirit level; attitude adjustment; pressure test; underwater pressure


References


[1]Li Z, Wang J H. On the development of deep-sea engineering equipment and the rise of marine power. Ocean Development and Management, 2016, 33(1):  78-81.

[2]Wu L Q, Zhang T, Xu J J, et al. The future of oil and gas exploration and development lies in the deep sea. China Mining News, (2020-03-11)[2020-08-21].

[3]Wang Q S. Development and application of a new type of electronic level. Journal of Harbin University of Science and Technology, 1989, 13(1):  6-10.

[4]Li J L, Ding G Q, Yan G Z, et al. Development of a digital level based on photoelectric principle. Metrology Technology, 2001(10):  17-20.

[5]Sheng W, Wang Q G, Zhu S A. Real-time automatic level bar calibration based on Canny edge detection and weighted least square method. Mechanical and Electrical Engineering, 2016, 33(10):  1182-1187.

[6]Wang C T, Yang E H, Zhang J G,et al. The structure and measurement principle analysis for omnibearing electronic gradienter. Chinese Journal of Scientific Instrument, 2006(2):  183-185.

[7]Qian S J, Wang C T, Tang L P, et al. Novel design of omnibearing electronic gradienter and error analysis. Journal of Sensor Technology, 2006(2):  353-355.

[8]Bai J, Meng L J, Zhang H H. Design of high-precision underwater dip angle measuring system. China Test, 2017, 43(6):  70-74.

[9]Wang H Y, Duan F J, Jiang J J, et al. A two-dimensional photoelectric level inclination measuring system. Optics and Precision Engineering, 2017, 25(12):  3120-3127.

[10]Fabrizio B, Gerardo G. A new typology of DC tiltmeter based on the Watt’s linkage architecture. Sensors and Actuators: A. Physical, 2018, 281: 264-277.

[11]Xia J N, Lin Q, Geng L X, et al. Portable vertical pendulum tiltmeter development and application test. Acta Geodaetica et Geophysica, 2019, 54(2):  287-300.

[12]Liu W, Zhou C Y, Zhang L, et al. Optimization of the pressure shell structure of flying fish underwater robot. Science and Technology Wind, 2021(7):  7-8.

[13]Zhang L L, Zhao M X, Xie Y L. Test tooling design for high-current batteries under ultra-high pressure. Modern Manufacturing Technology and Equipment, 2021, 57(1):  81-82.

[14]Yang H W, Xu H Y. Numerical simulation experiment of spherical object moving in viscous liquid. Education Modernization, 2017, 4(7):  118-119.

[15]Zhao L X, Ding X L, Zhang Y M, et al. The full use of the O-ring seal function. Drainage and Irrigation Machinery, 2000(2):  32-34.

[16]Jiang L, Zhang R T, Chen J, et al. Optimization and improvement of a dynamic sealing structure of a hydraulic operating mechanism. Hydropneumatics and Sealing, 2021, 41(3):  66-70.

[17]Wu G Z. Calculation of Tightening Stress and Torque of Bolt. Internal Combustion Engine and Power Plant, 2012(1):  39-41.

[18]Jin X. Design and strength analysis of pressure-resistant instrument cabin of underwater robot. Harbin: Harbin Engineering University, 2018.

[19]Da X X, He D F. Stress analysis and strength check of load mounting thread on electro-optical turntable. Application of Optoelectronic Technology, 2020, 35(4):  54-59.

[20]Lao Z H. Experimental study on the measurement of the relationship between liquid bulk elastic modulus and oil-water ratio. Science Technology and Engineering, 2010, 10(9):  2148-2150.



深水万向水平仪研制



赵连玉1, 李硕1 , 赵晓磊2, 李茂林2 , 陈金玉2, 王成林1


(1. 天津理工大学 机械工程学院 天津市先进机电系统设计与智能控制重点实验室; 机电工程国家级实验教学示范中心, 天津 300384;2.  海洋石油工程股份有限公司, 天津 300461)


摘要:深水海域水下设施的安装过程中, 姿态调节是一个关键环节。 为解决这一问题, 研发一种应用于深水的万向水平仪。 对水平仪的密封原理及深水耐压原理进行了分析; 对螺纹联接强度进行了校核; 通过力学仿真验证了水平仪可以耐受2 000 m水深的压力, 在20 MPa高压舱内进行了30 min水压测试。 实验完成后, 水平仪外观完好、 无泄漏情况。 实验表明, 深水万向水平仪可以被应用于2 000 m内的深海。 


关键词:深水万向水平仪; 姿态调节; 压力测试; 水下压力


引用格式:ZHAO Lianyu,  LI Shuo, ZHAO Xiaolei, et al. Design of deep-water omnidirectional spirit level. Journal of Measurement Science and Instrumentation, 2021, 12(4): 472-478. DOI: 10.3969/j.issn.1674-8042.2021.04.011



[full text view]