MIAO Zhongcui1,2, LI Dongliang1, WANG Zhihao1, YU Xianfei1, ZHANG Wenbin1
(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Key Laboratory of Opto-Technology and Intelligent Control of Ministry of Education,Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: Considering the actual demand for high-speed operation of induction motors in industrial occasions, the characteristics of induction motors in different regions are analyzed, especially the field weakening characteristics of induction motors in high-speed operation are studied. A field weakening control method of induction motor based on model predictive control (MPC) algorithm is proposed, which can predict the future state of the controlled object, and then obtain the optimal control variables by colling optimization. The simulation results show that the field-weakening control method based on MPC algorithm has faster response speed, stronger robustness and better control performance than the traditional control methods.
Key words: induction motor; model predictive control (MPC); field-weakening control; rolling optimization
References
[1]Han T L. Research on speed control of mining traction motor based on fractional sliding mode. Lanzhou: Lanzhou Jiaotong University, 2018: 2-10.
[2]Liu Y S, Qiao M Z, Zhu P. Research on over-angle weakening control strategy based on SVPWM overmodulation. Electric Machines & Control Application, 2018, 45(2): 28-33.
[3]Kim S H, Sul S K. Maximum torque control of aninduction machine in the field weakening region. IEEE Transactions on Industry Applications, 1995, 31(4): 787-794.
[4]Shin M H, Hyun D S, Cho S B. Maximum torque controlof stator-flux-oriented induction machine drive in thefield-weakening region. IEEE Transactions on IndustryApplications, 2002, 38(1): 117-122.
[5]Gabriel G L, Fani S G, James E W. Current control of induction machines in the field-weakened region. IEEE Transactions on Industry Applications, 2007, 43(4): 981-989.
[6]Lin P Y, Lai Y S. Novel voltage trajectory control forField-weakening operation of induction motor drives. IEEE Transactions on Industry Applications, 2011, 47(1): 122-127.
[7]Wu F, Wan S M, Huang S H. An overmodulation algorithm and its application in PMSM drive with flux-weakening control. Journal of Electrical Technology, 2010, 25(1): 58-63.
[8]Yang Y, Wang Q N, Gong Y M, et al. Torque-maximizing field-weakening control of induction motors. Electric Machines and Control, 2017, 21(12): 51-59.
[9]Casadei D, Mengoni M, Serra G, et al. Field-weakening control schemes for high-speed drives based on induction motors. In: Proceedings of IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008: 2159-2166.
[10]Li H M, Wu X X, Le S K, et al. Model predictive direct torque control of induction motor based on three level optimization vector. Journal of Motor and Control, 2018, 22(8): 65-74.
[11]Zhang Y C, Yang H T. Model predictive control for speed sensorless induction motor drive. Chinese Journal of Electrical Engineering, 2014, 34(15): 2422-2429.
[12]Miao Z C, Han T L, Dang J W, et al. Vector control of induction motor based on fractional-order intelligent-integral speed controller. Journal of Measurement Science and Instrumentation, 2018, 9(2): 125-133.
[13]Miao Z C, Yu X F, Zhang W B, et al. Three-phase six-switch fault-tolerant inverter drives induction motor FCS-MPC. Control and Decision-Making. 2020, 35(6): 1377-1383.
[14]Bozhko S, Dymko S, Kovbasa S, et al. Maximum torque-per-amp control for traction IM drives: Theory and experimental results. IEEE Transactions on Industry Applications, 2017, 53(1): 181-193.
[15]Miao Z C, Zhang W B, Han T L, et al. Fractional order integral sliding mode control for PMSM based onfractional order sliding mode observer. Journal of Measurement Science and Instrumentation, 2019, 10(4): 389-397.
[16]Zheng Z D, Chen N N, Li Y D. A novel flux weakening method for induction motors based on model predictive control. Journal of Electrical Technology, 2014, 29(3): 33-40.
[17]Li J, Niu F, Huang X Y, et al. Prediction error analysis of finite-control-set model predictive current control for PMSMs. Journal of Motor and Control, 2019, 23(4): 1-7.
[18]Zhang Y, Bai Y, Yang H, et al. Low switching frequency model predictive control of three-level inverter-fed IM drives with speed-sensorless and field-weakening operations. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4262-4272.
基于模型预测的感应电机弱磁控制研究
缪仲翠1,2, 李东亮1, 王志浩1, 余现飞1, 张文宾1
(1.兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070)
摘要: 考虑工业场合对感应电机高速运行的实际需求, 分析了感应电机在不同区域运行时的特点, 特别对电机高速运行时的弱磁特性进行了研究, 提出了一种基于模型预测算法的感应电机弱磁控制方法。 首先预测被控对象未来的状态, 再由滚动优化求出最优控制变量。 仿真结果表明, 基于模型预测算法的弱磁控制方法有更快的响应速度和较强的鲁棒性。
关键词: 感应电机; 模型预测控制; 弱磁控制; 滚动优化
引用格式:MIAO Zhongcui, LI Dongliang, WANG Zhihao, et al. Field-weakening control system of induction motor based on model prediction. Journal of Measurement Science and Instrumentation, 2021, 12(3): 314-321. DOI: 10.3969/j.issn.1674-8042.2021.03.009
[full text view]