此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

A low harmonic 12-pulse rectifier based on zigzag autotransformer by current injection at DC side

LIU Jiongde1, CHEN Xiaoqiang1,2, WANG Ying1, CHEN Tao1 



(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Key Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education,Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract: To improve the harmonic suppression ability of multi-pulse rectifier, a 12-pulse rectifier based on zigzag autotransformer by DC side active compensation strategy is proposed. By controlling the small capacity current inverter to generate compensating currents and injecting the currents directly into the DC side of the system, the grid-side currents of the rectifier can be approximated to sine wave. Using zigzag autotransformer as phase-shifting transformer can block the zero sequence current components and reduce the equivalent capacity of the rectifying system. The study on harmonic distortion rate of grid-side currents with the variation of the load shows that the harmonic content of the compensated rectifier decreases significantly under various load conditions. The harmonic content of the grid-side currents of the proposed active injection rectifier is only 1.17%, and the equivalent capacity of the rectifier is calculated. The results show that the rectifier can not only suppress the harmonic currents, but also have a lower equivalent capacity.


Key words: multi-pulse rectifier; active compensation; zigzag autotransformer; equivalent capacity


References


[1]Shahbaz K, Zhang X B, Muhammad S, et al. Comparative analysis of 18-pulse autotransformer rectifier unit topologies with intrinsic harmonic current cancellation. Energies, 2018, 11(6): 1347.

[2]Meng F, Wei Y, Yang S, et al. Active harmonic reduction for 12-pulse diode bridge rectifier at DC side with two-stage auxiliary circuit. IEEE Transactions on Industrial Informatics, 2017, 11(1): 64-73.

[3]Fangang M, Shiyan Y, Wei Y. Overview of multi-pulse rectifier technique. Electric Power Automation Equipment, 2012, 32(2): 9-22.

[4]Chen J L, Li Y H, Jiang X J, et al. Control methods of hybrid active power filter reduced its converter rating. Transactions of China Electrotechnical Society, 2009, 24(4): 214-218.

[5]Paice D. Power electronics converter harmonics: multipulse methods for clean power. Wiley: IEEE Press, 1996.

[6]Araujo-Vargas I, Forsyth A J, Chivite-Zabalza F J. Capacitor voltage-balancing techniques for a multipulse rectifier with active injection. IEEE Transactions on Industry Applications, 2011, 47(1): 185-198.

[7]Hamadi A, Rahmani S, Al-Haddad K. Digital control of a shunt hybrid power filter adopting a nonlinear control approach. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2092-2104.

[8]Rodriguez J R, Pontt J, Silva C, et al. Large current rectifiers: state of the art and future trends. IEEE Transactions on Industrial Electronics, 2005, 52(3): 738-746.

[9]Meng F G, Yang W, Yang S. Active harmonic suppression of paralleled 12-pulse rectifier at DC side. Science in China Series E: Technological Sciences, 2011, 54(12): 3320-3331.

[10]Biela J, Hassler D, Schnberger J, et al. Closed-loop sinusoidal input-current shaping of 12-pulse autotransformer rectifier unit with impressed output voltage. IEEE Transactions on Power Electronics, 2011, 26(1): 249-259.

[11]Chen X Q, Zhao S W, Wang Y. Simulation of a kind of active harmonic reduction 18-pulse rectifier. Journal of Measurement Science and Instrumentation, 2018, 9(2): 160-168.

[12]Young C M, Wu S F, Yeh W S, et al. A DC-side current injection method for improving AC line condition applied in the 18-pulse converter system. IEEE Transactions on Power Electronics, 2014, 29(1): 99-109.

[13]Liu K, Cao W, You J, et al. Improved parallel operation for multi-modular shunt APF using dual harmonic compensation loop. In: Proceedings of 2016 IEEE 8th International Power Electronics and Motion Control Conference, Hefei, China, 2016.

[14]Meng F G, Liu P Y, Sun Z N, et al. Active harmonic elimination of a large current rectifier based on star-connected autotransformer. In: Proceedings of  2016 IEEE 8th International Power Electronics and Motion Control Conference, Hefei, China, 2016.

[15]Choi S, Jang M. Analysis and control of a single-phase inverter zigzag-transformer hybrid neutral-current suppressor in three-phase four-wire systems. IEEE Transactions on Industrial Electronics, 2007, 54(4): 2201-2208.

[16]Singh B, Bhuvaneswari G, Garg V, et al. Pulse multiplication in AC-DC converters for harmonic mitigation in vector-controlled induction motor drives. IEEE Transactions on Energy Conversion, 2006, 21(2): 342-352.

[17]Singh B, Gairola S. Pulse multiplication in autotransformer based AC-DC converters using A zigzag connection. Journal of Power Electronics, 2007, 7(3): 191-202.

[18]IEEE Standard 519-1992. IEEE guide for harmonic control and reactive compensation of static power converters. New York: Institute of Electrical and Electronic Engineers (IEEE), 1992.

[19]International Electro-technical Commission Standard 61000-3-2. Limits for harmonic current emissions. Geneva: International Electrotechnical Commission (IEC), 2004.

[20]Vidyasagar V S, Kalpana R, Singh B, et al. Improvement in Harmonic Reduction of Zigzag Autoconnected Transformer Based 12-pulse Diode Bridge Rectifier by Current Injection at DC Side. IEEE Transactions on Industry Applications, 2017, 53(6): 5634-5644.


一种基于直流侧有源注入的12脉波之字形自耦变压整流器


刘炯德1, 陈小强1,2, 王英1, 陈涛1


(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 兰州交通大学 光电技术与智能控制教育部重点实验室, 甘肃 兰州 730070)


摘要:为提高多脉波整流器的谐波抑制能力, 提出了一种基于直流侧有源补偿策略的之字形自耦变压整流器。 通过控制小容量电流逆变器产生补偿电流, 并将补偿电流直接注入到系统的直流侧使整流器输入电流近似为正弦波。 使用之字形自耦变压器作为移相变压器以阻断零序电流成分, 降低整流系统的等效容量。 研究网侧电流谐波畸变率随负载的变化规律表明, 在各种负载条件下, 补偿后的整流系统谐波含量显著降低。 所提出的有源注入整流系统的网侧电流谐波含量仅为1.17%, 且具有较低的等效容量。 


关键词:多脉波整流器; 有源补偿; 之字形自耦变压器; 等效容量


引用格式:LIU Jiongde, CHEN Xiaoqiang, WANG Ying, et al. A low harmonic 12-pulse rectifier based on zigzag autotransformer by current injection at DC side. Journal of Measurement Science and Instrumentation, 2021, 12(3): 347-355. DOI: 10.3969/j.issn.1674-8042.2021.03.013



[full text view]