此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Experimental research on flame propagation characteristics of coal dust combustion

LIU Yifei1, ZHANG Yun1, YANG Zhenxin1, LIU Xuanshen1, CHEN Chengfang2, BU Lingtao2, XU Sen3, CAO Weiguo1


(1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;2. Shandong Tianbao Chemical Industry Corporation, Pingyi 273300, China; 3. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)


Abstract: The presence of coal dust explosions in coal mining are significant safety hazards. This study mainly explores the flame propagation of coal dust combustion so as to provide a theoretical basis for the prevention and control of coal dust explosions. In the experiment, a dust cloud ignition device was used to experimentally explore the influence of the coal dust concentration on the flame propagation of the coal dust, and high-speed photography was used to record the coal dust flame propagation process. The results show that the flame propagates vertically along the wall of the vertical glass tube, emits a bright yellow light during the propagation process, and forms a mushroom cloud-shaped flame at the upper end of the vertical glass tube. When the concentration of coal dust is 250 g/m3, its burning time is much less than those of 500 g/m3 and 750 g/m3. When the concentrations are 250 g/m3, 500 g/m3 and 750 g/m3, respectively, the corresponding maximum propagation velocities of the flame front reach 1.51 m/s, 2.00 m/s and 1.61 m/s at 100 ms, 353 ms and 310 ms, respectively. The time for the flame front velocity to reach the maximum and the maximum velocity of flame propagation first increase and then decrease with the rising of concentration.


Key words: coal dust; flame propagation; coal dust concentration; flame front velocity


References


[1]Luo Z M, Liu R W, Cheng F M, et al. Research status and development trend of coal dust explosion. Mining Safety and Environmental Protection, 2020, 47(2): 94-98.

[2]Tan B, Shao Z Z, Xu B, et al. Analysis of explosion pressure and residual gas characteristics of micro-nano coal dust in confined space. Journal of Loss Prevention in the Process Industries, 2020, 64: 104056.

[3]Zhang K, Wang Z R, Gong J H, et al. Experimental study of effects of ignition position, initial pressure and pipe length on H2-air explosion in linked vessels. Journal of Loss Prevention in the Process Industries, 2017, 50: 295-300.

[4]Guo C W, Shao H, Jiang S G, et al. Effect of low-concentration coal dust on gas explosion propagation law. Powder Technology, 2020, 367: 243-252.

[5]Qi Y Q, Gan X Y, Li Z, et al. Variation and prediction methods of the explosion characteristic parameters of coal dust/gas mixtures. Energies, 2021, 14(2): 264-264.

[6]Xu T T, Li S G, Hao H B, et al. Study on gas-coal dust explosion characteristics. Coal and Chemical Industry, 2021, 44(1): 113-115.

[7]Ban T, Liu Z Q, Cheng L, et al. Effect of ignition energy on coal dust explosion. Thermal Science, 2020, 24(4): 2621-2628.

[8]Wang S Y, Shi Z C, Peng X, et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures. Powder Technology, 2019, 342: 509-516.

[9]Mogi T, Kim W K, Dobashi R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501-1505.

[10]Ma D, Qin B T, Gao Y, et al. Study on the explosion characteristics of methane-air with coal dust originating from low-temperature oxidation of coal. Fuel, 2020, 260: 116304.

[11]Li H T, Deng J, Chen X K, et al. Transient temperature evolution of pulverized coal cloud deflagration in a methane-oxygen atmosphere. Powder Technology, 2020, 366: 294-304.

[12]Jing G X, Liu C, Zhang S Q, et al. Experimental approach to the flame propagation features of the explosive gas and coal dust in the semi-closed pipeline. Journal of Safety and Environment, 2020, 20(4): 1321-1326.

[13]Lin S, Liu Z T, Li X L, et al. A study on the FTIR spectra of pre- and post-explosion coal dust to evaluate the effect of functional groups on dust explosion. Process Safety and Environmental Protection, 2019, 130: 48-56.

[14]Li Q Z, Yuan C C, Tao Q L, et al. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel, 2018, 215: 417-428.

[15]Chen Y Y, Maria M, Arndt S. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 2012, 104: 22-33.


煤粉云火焰传播特性实验研究


刘毅飞1, 张云1, 杨振欣1, 刘炫棽1, 陈成芳2, 卜令涛2, 徐森3, 曹卫国1


(1. 中北大学 环境与安全工程学院, 山西 太原 030051;2. 山东天宝化工股份有限公司,  山东 平邑 273300; 3. 南京理工大学 化工学院, 江苏 南京 210094)


摘要:煤矿开采中存在煤粉爆炸的重大安全隐患, 本实验主要研究煤粉云的火焰传播, 为预防和控制煤粉爆炸事故提供理论依据。 实验采用粉尘云点火装置对煤粉在燃烧玻璃管中进行试验, 通过改变煤粉云浓度探讨其对煤粉云火焰传播过程的影响, 并利用高速摄影记录煤粉火焰传播过程。 结果表明, 点火电极在点燃煤粉云后, 火焰沿着玻璃直管管壁竖直传播, 火焰在传播过程中发出明亮的黄光并在玻璃直管上端端口形成蘑菇云状的火焰。 当煤粉云的浓度为250 g/m3时, 其燃烧时间远远小于浓度为500 g/m3和750 g/m3时的燃烧时间。 当浓度分别为250 g/m3、 500 g/m3和750 g/m3时, 其火焰前锋阵面最大传播速度分别在100 ms、 353 ms和310 ms时达到相应的最大值1.51 m/s、 2.00 m/s和1.61 m/s。 火焰前锋阵面达到最大速度的时间和火焰传播的最大速度随浓度的增加先增大后减小。 


关键词:煤粉; 火焰传播; 煤粉浓度; 火焰传播速度


引用格式:LIU Yifei, ZHANG Yun, YANG Zhenxin, et al. Experimental research on the flame propagation characteristic of coal dust combustion. Journal of Measurement Science and Instrumentation, 2021, 12(3): 356-361. DOI: 10.3969/j.issn.1674-8042.2021.03.014


[full text view]