WANG Jin1, WANG Xingchen1, GAO Xiang1, NING Renxia1,2
(1. School of Information Engineering, Huangshan University, Huangshan 245041, China;2. Anhui Province Engineering Technology Research Center of Intelligent Microsystems, Huangshan 245041, China)
Abstract: The electromagnetically induced reflection (EIR) effect of graphene metamaterials has been investigated by finite difference time domain (FDTD) method. In this study, a metamaterial sandwich structure composed of silica (SiO2), gold and graphene on terahertz band is designed. By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave, the EIR effect of the structure is discussed, and it can be found that SiO2 is a kind of excellent dielectric material. The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave. Therefore, such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.
Key words: electromagnetically induced reflection (EIR); graphene metamaterials; polarization insensitivity; finite difference time domain (FDTD) methodReferences
[1]Xia H, Sharpe S J, Merriam A J, et al. Electromagnetically induced transparency in atoms with hyperfine structure. Physical Review A, 1997, 56(5): 315-319.
[2]Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Physical Review Letters, 2013, 111(3): 033601.
[3]Liu N, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Letters, 2010, 10(4): 1103-1107.
[4]Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency. Physical Review Letters, 2008, 101(25): 253903.
[5]Shu C, Chen Q G, Mei J S, et al. Dynamically tunable implementation of electromagnetically induced transparency with two coupling graphene-nanostrips in terahertz region. Optics Communications, 2018, 411: 48-52.
[6]Tang H, Zhou L, Xie J, et al. Electromagnetically induced transparency in a silicon self-coupled optical waveguide. Journal of Lightwave Technology, 2018, 36(11): 2188-2195.
[7]Wang Y, Leng Y, Wang L, et al. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band. Applied Physics Express, 2018, 11(6): 062001.
[8]Xiao S, Wang T, Liu T, et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2017, 126:271-278.
[9]Shen Z Y, Xiang T Y, Wu N, et al. Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials. Journal of Physics D: Applied Physics, 2018, 52(1): 015003.
[10]Luo W, Cai W, Xiang Y, et al. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system. Optics Express, 2016, 24(6): 5784-5793.
[11]Niu Y, Wang J, Hu Z, et al. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces. Optics Communications, 2018, 416: 77-83.
[12]Liu C X, Liu P G, Yang C, et al. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 2019, 142: 354-362.
[13]Vafapour Z. Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance. Journal of the Optical Society of America A, 2018, 35(3): 417-422
[14]Liu Y, Zhang Y Q, Jin X R, et al. Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect. Optics Communications, 2016, 371: 173-177.
[15]He X, Yao Y, Huang Y, et al. Active manipulation of electromagnetically induced reflection in complementary terahertz graphene metamaterial. Optics Communications, 2018, 407: 386-391.
[16]Jiang J, Zhang Q, Ma Q, et al. Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Optical Materials Express, 2015, 5(9): 1962-1971.
[17]Shen Z, Xiang T, Wu J, et al. Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial. Journal of Magnetism and Magnetic Materials, 2019, 476: 69-74.
[18]Li H. Polarization-insensitive electromagnetically induced transparency based on ultra-thin coupling planar metamaterials. Optical Materials Express, 2018, 8(2): 348-355.
[19]Ning R X, Bao J, Meng Y J, et al. Wideband reciprocity tunable electromagnetically induced transparency in complementary graphene metasurface. Journal of Optics, 2019, 21: 045106.
[20]Mikhailov S A, Ziegler K. A new electromagnetic mode in graphene. Physical Review Letters, 2007, 99(1) :016803.
[21]Falkovsky, L A. Optical properties of graphene. Journal of Physics Conference Series, 2008, 129: 012004.
石墨烯超表面的极化不敏感电磁诱导反射
王瑾1, 汪星辰1, 高翔1, 宁仁霞1,2
(1. 黄山学院 信息工程学院, 安徽 黄山 245041;2. 安徽省智能微系统工程技术研究中心, 安徽 黄山 245041)
摘要:利用时域有限差分(Finite difference time domain, FDTD)方法研究了石墨烯超材料的电磁诱导反射(Electromagnetically induced reflection, EIR)效应。 首先, 设计了一种在太赫兹波段上由二氧化硅(SiO2)、 金和石墨烯条组成的三层超材料结构。 然后, 讨论了石墨烯条的宽度、 长度和电磁波的入射角等参数不同的情况下该结构的电磁诱导反射效应, 并通过改变结构的中间层介质材料得出SiO2是一种优良的介电材料。 最终的模拟结果表明, 该石墨烯超材料对极化入射的电磁波不敏感。 该极化不敏感和大入射角的电磁诱导反射结构在光通信滤波器和太赫兹器件中有潜在的应用。
关键词:电磁诱导反射; 石墨烯超材料; 极化不敏感; 时域有限差分法
引用格式:WANG Jin, WANG Xingchen, GAO Xiang, et al. Polarization insensitivity electromagnetically induced reflection in graphene metasurface. Journal of Measurement Science and Instrumentation, 2021, 12(3): 362-368. DOI: 10.3969/j.issn.1674-8042.2021.03.015
[full text view]