此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Influence of temperature on mechanical stimulation threshold of typical liquid propellant



JIANG Yuxuan1, JIN Shanpin1,2, JIANG Rongpei3, TANG Yulin4, WU Xingliang1, XU Feiyang1, XU Sen1, LIU Dabin1


(1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;2. Dafang County Public Security Bureau of Guizhou Province, Bijie 551600, China;3. Beijing Institute of Aerospace Technology, Beijing 100074, China;4. Shanghai Space Propulsion Technology Research Institute, Shanghai 201109, China)



Abstract: In order to study the variation of temperature to mechanical stimulation threshold of typical liquid propellants (ADN-based HAN-based and nitromethane), the critical impact energy and critical friction of three propellants under different temperatures were studied by using BAM fall hammer impact sensitivity tester and BAM friction sensitivity tester. Experiments show that under 80 ℃, 60 ℃, 40 ℃ and 20 ℃, the critical impact energy of HAN-based are 20 J, 15 J, 15 J, 15 J; the critical impact energy of nitromethane are 2 J, 2 J, 2 J, 2 J; and the critical impact energy of ADN-based are < 1 J, 3 J, 7.5 J, 15 J. It reveals that HAN-based propellant has the highest critical impact energy, while nitromethane propellant has the lowest critical impact energy. ADN-based propellant has a notable decrease on its critical impact energy with temperature decreasing, indicating that temperature has a significant effect on impact sensitivity of ADN-based propellant. The critical friction of three samples are all higher than 360 N at 80 ℃, 60 ℃, 40 ℃ and 20 ℃, which shows that the samples are not sensitive to friction, and temperature has no significant effect on the critical friction of three samples. The mechanical stimulations that may be encountered during the production and use of liquid propellants are analyzed, which takes certain working conditions and the temperature coupling effect into consideration, thereby providing support for safety management of liquid propellants during production and storage process.

Key words: liquid propellant; hydroxylamine nitrate (HAN-based); nitromethane; ammonium dinitramide (ADN-based); impact sensitivity; friction sensitivity; temperature

References

[1]Wang H T, Zhou J Y. Overview of the preparation of hydroxylamine nitrate NH2OH·HNO3 and its stabilizers. Chemical Propellants and Polymer Materials, 2007, 2: 18-23.
[2]Liu J G, An Z T, Zhang Q, et al. The effect of Fe3+ doping on the thermal stability of hydroxylamine nitrate and its mechanism. Journal of Propellants, 2017, 40(1): 53-58.
[3]Lu X F. First-principles molecular dynamics study of nitromethane. Information Recording Materials, 2019, 20(1): 21.
[4]Ye H, Jia L C, Wang X, et al. Research on the detonation temperature of nitromethane. Ordnance Equipment Engineering Journal, 2014, 35(5): 124-127.
[5]Lei Q, Lu Y H, He J X. Synthesis, crystal structure and properties of potassium dinitramide. Journal of Propellants, 2017, 40(2): 57-59.
[6]Zhou W L. Friction caught three people seriously injured in the explosion of a truck. Information Times, 2013-11-03.
[7]Zhao X C, Xiao H. Impact sensitivity and activation energy of pyrolysis for tetrazole compounds. International Journal of Quantum Chemistry, 2015, 79(6): 350-357.
[8]Politzer P, Murray J S. Impact sensitivity and the maximum heat of detonation. Journal of Molecular Modeling, 2015, 21(10): 1-11.
[9]BNing C W, Budich R G. Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction. Journal of Physical Oceanography, 1992, 22(4): 361-381.
[10]Liu G T, Qu H X. A study on impact sensitivity, friction sensitivity and brisance of superfine RDX. Journal of Nanjing University of Science & Technology, 2002, 26(4): 410-413.
[11]Jungová M, Zeman S, Husarová A. Friction sensitivity of nitramines. Part Ⅰ: comparison with impact sensitivity and heat of fusion. Energetic Materials, 2011, 19(6): 603-606.
[12]Joanna S, Sandra C, Pawel M, et al. Friction sensitivity of the ε-CL-20 crystals obtained in precipitation process. Central European Journal of Energetic Materials, 2011, 8(2): 3185-3186.
[13]Liu R P, Jia X Z, Wang Y S. Progress in the influence of preparation method on impact sensitivity of HNIW. New Chemical Materials, 2019, 47(7): 248-250.
[14]Wang X J, Guo W X, Li Y N, et al. The influence of process temperature on the coating effect and impact sensitivity of F2604/HMX composite particles. Journal of Propellants, 2020, 43(1): 45-50.
[15]Gao D Y, Zheng B H, Huang H J, et al. Effect of polymer additives on impact sensitivity and power of composition B. Energetic Materials, 2017, 25(4): 326-332.
[16]Hang G Y, Yu W L, Wang T, et al. The influence of temperature on the mechanical properties and sensitivity of explosive B. Pyrotechnics, 2016, 4: 44-48.
[17]Liu Q, Xiao J J, Chen J, et al. Molecular dynamics simulation calculation of CL-20 crystal sensitivity and mechanical properties at different temperatures. Journal of Explosives, 2014, 37(2): 7-12.
[18]Xie R Z, Lu B, Zhao J H, et al. Research on mechanical sensitivity of ultrafine HNIW. Fireworks, 2006(5): 24-26.
[19]Jiang X B, Chen L P, Peng J H, et al. Research on the influence of ambient temperature on the mechanical sensitivity of pyrotechnics mixed touch. China Safety Science Journal, 2010, 8: 95-98.
[20]Tan A X, Zhang G H, Liu J B. Analysis of factors affecting the mechanical sensitivity of pyrotechnic powder for fireworks and firecrackers. Pyrotechnics, 2004, 4: 49-51.
[21]GJB772A—1997. Explosive test method. Beijing: Military Standard Press of Commission of Science, Technology and Industry for National Defense.
[22]Hussein A K, Elbeih A, Zeman S. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. RSC Advances, 2018, 31(8): 17272-17278.
[23]Ulas A, Boysan E. Numerical analysis of regenerative cooling in liquid propellant rocket engines. Aerospace Science and Technology, 2013, 24(1): 187-197.
[24]Wei C Y, Rogers W J, Mannan M S. Thermal decomposition hazard evaluation of hydroxylamine nitrate. Journal of Hazardous Materials, 2006, 130(1-2): 163-168.
[25]Lee H S, Litzinger T A. Chemical kinetic study of HAN decomposition. Combustion Flame, 2003, 135(1-2): 151-169.
[26]Barney G S, Duval P B. Model for predicting hydroxylamine nitrate stability in plutonium process solutions. Journal of Loss Prevention in the Process Industries, 2011, 24(1): 76-84.
[27]Raddd A, Toshiyuki K, Noboru I, et a1. New HAN based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: thermal decomposition and possible thruster applications. Combustion Flame, 2015, 162(6): 2686-2692.
[28]Liu J G, An Z T, Zhang Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate. Materials Review, 2017, 31(4): 145-152.
[29]Nguyen M T, Le H T, Hajgató B, et al. Nitromethane-Methyl nitrite rearrangement: a persistent discrepancy between theory and experiment. Journal of Physical Chemistry A, 2003, 93(21): 4286-4291.
[30]Mckee M L. MCSCF study of the rearrangement of nitromethane to methyl nitrite. Journal of Physical Chemistry, 1989, 93(21): 7365-7369.
[31]Dong G X, Cheng X L, Ge S H, et al. Density functional theory study on the decomposition mechanism of condensed nitromethane. Chinese Journal of Atomic and Molecular Physics, 2014, 31(5): 687-694.
[32]Shao L Y. Study on the hazardous characteristics of nitromethane thermal decomposition. Journal of Safety and Environment, 2012, 12(3): 184-186.
[33]Wan D H, Fu Q, Huang H Y, et al. The effect of burning rate catalyst on the thermal decomposition of ADN. Journal of Propellants and Explosives, 2006, 2: 72-75.



温度对典型液体推进剂机械刺激阈值的影响

蒋宇轩1, 金山品1,2, 蒋榕培3, 汤玉林4, 吴星亮1, 徐飞扬1, 徐  森1, 刘大斌1

(1. 南京理工大学 化工学院, 江苏 南京 210094; 2. 贵州省大方县公安局, 贵州 毕节 551600;3. 北京航天试验技术研究所, 北京 100074; 4. 上海空间推进研究所, 上海 201109)


摘  要:  为了研究温度对典型液体推进剂(ADN基、 HAN基和硝基甲烷)机械刺激反应阈值的变化规律, 采用BAM撞击感度仪和BAM摩擦感度仪研究了不同温度条件下三种推进剂临界撞击能量和临界摩擦力。 结果显示在80 ℃、 60 ℃、 40 ℃和20 ℃下的临界撞击能量, HAN基样品为20 J、 15 J、 15 J、 15 J, 硝基甲烷样品为2 J、 2 J、 2 J、 2 J, ADN基样品为小于1 J、 3 J、 7.5 J、 15 J。 结果表明HAN基样品的临界撞击能量最高, 硝基甲烷的临界撞击能量最小, ADN基样品的临界撞击能量随温度升高而快速降低, 表明温度对ADN基样品的感度具有显著影响。 三种样品在80 ℃、 60 ℃、 40 ℃和20 ℃下的临界摩擦力均大于360 N, 表明样品对摩擦作用不敏感, 且温度对三种样品的临界摩擦力无显著影响。 本文对液体推进剂在生产和使用等过程中可能遭遇的机械刺激进行了定量分析, 对液体推进剂在生产以及储存过程中的安全管理具有实际意义。


关键词:  液体推进剂; 硝酸羟胺; 硝基甲烷; ADN; 撞击感度; 摩擦感度; 温度

引用格式:  JIANG Yuxuan, JIN Shanpin, JIANG Rongpei, et al. Influence of temperature on mechanical stimulation threshold of typical liquid propellant. Journal of Measurement Science and Instrumentation, 2021, 12(2): 154-159. DOI: 10.3969/j.issn.1674-8042.2021.02.004


[full text view]