此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Calibration of GNSS positioning receivers

Karim Elglmady1, Hatem Hussein1, Osama Terra1, Mohamed Medhat2


(1. National Institute of Standard (NIS), Giza 12211, Egypt;2. Faculty of Science, Ain-Shams University, Cairo 11435, Egypt)


Abstract: Nowadays global navigation satellite system (GNSS) receivers are the primary tool not only for precision surveying but also for geodesy, geophysics and many other industrial applications worldwide. The only way to assure the accuracy, universality and longevity of GNSS measurements is by calibration of its receivers. The parameters affecting the calibration accuracy of a single GNSS receiver are discussed in this paper. And a geodetic basepoint is established according to previous empirical studies to serve as a reference for calibration. Additionally, the traceability to the systeme international (SI) unit of such kind of calibrations is discussed. Stability of the base point is also verified through long-term measurements over three years. Eventually, a calibration of a sample single GNSS receiver is performed and the uncertainty budget is derived.


Key words: global navigation satellite system (GNSS); global position system (GPS);  receiver calibration


References


[1]Medhat M, Sobee M, Hussein H M, et al. Distance measurement using frequency scanning interferometry with mode-hoped laser. Optics & Laser Technology, 2016, 80: 209-213.
[2]Terra O. Laser ranging in air utilizing mode-locking in laser cavities. IEEE Photonics Technology Letters, 2017, 29: 1990-1993.
[3]Hussein H M, Terra O, Hussein H, et al. Using femtosecond laser pulses for electronic distance meter calibration. Applied Optics, 2020, 59: 6417.
[4]Hussein H M, Terra O, Hussein H, et al. Collinear versus non-collinear autocorrelation between femtosecond pulses for absolute distance measurement. Measurement, 2020, 152: 1-7.
[5]Terra O, Hussein H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2 → 5D5/2 two-photon transition in rubidium. Applied Physics B: Lasers and Optics, 2016, 122: 1-12.
[6]Terra O. Absolute frequency measurement of the hyperfine structure of the 5S1/2 - 5D3/2 two-photon transition in rubidium using femtosecond frequency comb. Measurement, 2019, 144: 83-87.
[7]Terra O. Single mode from optical frequency comb with relative stability of 10-17 using stimulated brillouin scattering. Journal of Lightwave Technology, 2019, 37: 1-7.
[8]ISO 17123-8. Optics and optical instruments - Field procedures for testing geodetic and surveying instruments - Part 8: GNSS field measurement systems in real-time kinematic (RTK). https://www.iso.org/standard/62961.html.
[9]Szpunar R, Drozdz M. GNSS receiver zero baseline test using GPS signal generator. Artificial Satellites, 2012, 47(1): 12-22.
[10]Bilich A, Mader G L. GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings of 23rd International Technology Meeting of Satellites Navigation, 2010, 2: 1369-1377.
[11]Talbot N C. A preliminary report on the static and fast static surveying results obtained on the federal geodetic control sub-committee (FGCS) test network using the trimble 4000SSE geodetic system surveyor and the GPS survey software system. Sunnyvale: Trimble Navigation Ltd., 1992.
[12]Hirst B. Guideline No 9 - GNSS verification. https://www.icsm.gov.au/.
[13]Hirst B. Guideline for control surveys by GNSS v2.1. In: Proceedings of Intergovernmental Committee on Surverying and Mapping, 2013.
[14]Yeh T K, Wang C S, Lee C W, et al. Construction and uncertainty evaluation of a calibration system for GPS receivers. Metrologia, 2006, 43: 451-460.
[15]Seeber. Satellite geodesy. 2nd ed. Berlin: Walter de Gruyter, 2003.
[16]Blewitt G. Basics of the GPS technique:  observation equations. Geodetic Applications of GPS. Swedish Land Survey, 1997. http://web.gps.caltech.edu/classes/ge111/Docs/GPS basics.pdf.
[17]Higgins M. Guidelines for GPS surveying in Australia. In: Proceedings of FIG Working Week, 2001: 6-11.
[18]Ke F, Wang Q, Pan S. Method of designing GNSS continuously operating reference station network and selecting station place. In: Proceedings of International Conference on Information Technology, 2009: 765129.
[19]Eckl M C, Snay R A, Soler T, et al. Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. Journal of Geodesy, 2001, 75: 633-640.
[20]Ugur S D, Engin C. Accuracy of GPS positioning over regional scales. Survey Review, 2009, 41: 192-200.
[21]Ozturk D, Sanli D U. Accuracy of GPS positioning from local to regional scales: a unified prediction model. Survey Review, 2011, 43: 579-589.
[22]Sanli D U, Kurumahmut F. Accuracy of GPS positioning in the presence of large height differences. Survey Review, 2011, 43: 162-176.
[23]Soycan M, Ocalan T. A regression study on relative GPS accuracy for different variables. Survey Review, 2011, 43: 137-149.
[24]ISO 98-3. Guide to the expression of uncertainty in measurement. https://www.docin.com/p-1602198081.html.
[25]Paar R, Novakovi G, Zulijani E. Positioning accuracy standards for geodetic control. 2009: 1-16. https://www.researchgate.net/publication/281640646.
[26]GPS for geodesy. Berlin: Springer, 1998.



GNSS定位接收器的校准


Karim Elglmady1, Hatem Hussein1, Osama Terra1, Mohamed Medhat2


(1. 国家标准学会, 吉萨 12211; 2. 艾因夏姆斯大学 理学院, 开罗 11435)


摘  要:  目前, 全球导航卫星系统(Global navigation satellite system, GNSS)接收器不仅是精密测量的主要工具, 而且还用于大地测量、 地球物理和许多其他工业应用中。确保GNSS测量精度、 通用性和寿命的唯一方法是对其接收机进行校准。本文讨论了影响单台GNSS接收机标定精度的参数, 并根据以往的经验研究, 建立了一个大地基准点作为校准的参考。 此外, 还讨论了这种校准对国际单位(Systeme international unit, SI unit)的可追溯性。通过三年多的长期测量, 验证了基准点的稳定性。最后, 对单台样本GNSS接收机进行了标定, 并推导了不确定度计算公式。


关键词:  全球导航卫星系统; 全球定位系统; 接收器校准



引用格式:  Karim Elglmady, Hatem Hussein, Osama Terra, et al. Calibration of GNSS positioning receivers. Journal of Measurement Science and Instrumentation, 2021, 12(2): 160-169. DOI: 10.3969/j.issn.1674-8042.2021.02.005



[full text view]