ZHANG Peng1, WEI Minghui1, GUO Zhiyong2, LIU Zhongxiang1
(1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China; 2. Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China)
Abstract: Magnetic flux leakage (MFL) testing technology has the advantages of simple principle, easy engineering implementation and low requirements on the surface of the detected workpiece. Therefore, it has been one of the research hotspots in the field of non-destructive testing (NDT) and widely used for testing long distance pipelines. This paper presents the development of MFL tesing technology from the aspects of basic theory, influencing factors, magnetization technology, signal processing, etc. The problems to be solved and the future development are summarized, which can provide reference for the research and system development of MFL testing technology.
Key words: non-destructive testing (NDT); magnetic flux leakage (MFL) testing; magnetization and detection; signal processing
References
[1]Yang L J, Zhao Y, Gao S W. Pressure-velocity model and speed adjustment strategy for in-pipe detector in gas pipeline. Chinese Journal of Scientific Instrument, 2012, 33(11): 2407-2413.
[2]Hu T H, Guo J B. Development and application of new technologies and equipments for in-line pipeline inspection. Natural Gas Industry, 2019, 39(1): 118-124.
[3]Huang S L, Wang Z, Wang S. Review on advances of pipe electromagnetic ultrasonic guided waves technology and its application. Chinese Journal of Scientific Instrument, 2018, 39(3): 1-12.
[4]Wu X J, Zhang Q, Shen G T. Review on advances in pulsed eddy current nondestructive testing technology. Chinese Journal of Scientific Instrument, 2016, 37(8): 1698-1712.
[5]Yan S, Chao Z, Rui L, et al. Theory and application of magnetic flux leakage pipeline detection. Sensors, 2015, 15(12): 31036-31055.
[6]Shcherbinin V E, Zatsepin N N. Calculation of the magnetostatic field of surface defects. I. Field topography of defect models. Defectoscopy, 1966(5): 385-393.
[7]Shcherbinin V E, Zatsepin N N. Calculation of the magnetostatic field of surface defects. II. Experimental verification of the principal theoretical relationships. Defectoscopy, 1966(5): 394-399.
[8]Qiao T J, Huang S L, Zhao W, et al. The current research status and prospects of magnetic memory testing technology. Nondestructive Testing, 2016, 38(11): 16-20.
[9]Sophian A, Tian G Y, Zairi S. Pulsed magnetic flux leakage techniques for crack detection and characterization. Sensors Actuators A, 2006, 125(2): 186-191.
[10]Wilson J W, Tian G Y. Pulsed electromagnetic methods for defect detection and characterization. NDT & E International, 2007, 40(4): 275-283.
[11]Kandroodi M R, Araabi B N, Ahmadabadi M N, et al. Detection of natural gas pipeline defects using magnetic flux leakage measurements. IEEE Electrical Engineering, 2013: 1-6.
[12]Kim J, Lee J, Le M, et al. Improvement of crack inspection possibility using gradient directional magnetization and linearly integrated hall sensors. Journal of Mechanical Science and Technology, 2012, 26(11): 3447-3451.
[13]Liu B, Liu B, Yang L J, et al. Finite element simulation of weak magnetic detection technology for pipelines. Oil & Gas Storage and Transportation. 2015, 34(7): 719-722.
[14]Minkov D, Takeda Y, Shoji T, et al. Estimating the sizes of surface cracks based on Hall element measurements of the leakage magnetic field and a dipole model of a crack. Applied Physics, 2002, 74(2): 169-176.
[15]Shcherbinin V E, Pashagin A I. Influence of the extension of a defect on the magnitude of its magnetic field. Defektoskopiya, 1972, 8(4): 74-82.
[16]Minkov D, Lee J, Shoji T. Study of crack inversions utilizing dipole model of a crack and Hall element measurements. Journal of Magnetism & Magnetic Materials, 2012, 217(1): 207-215.
[17]Mandache C, Clapham L. A model for magnetic flux leakage signal predictions. Journal of Physics D: Applied Physics, 2003, 36(20): 2427.
[18]Dutta S M, Ghorbel F H, Stanley R K. Dipole modeling of magnetic flux leakage. IEEE Transactions on Magnetics, 2009, 45(4): 1959-1965.
[19]Dutta S M, Ghorbel F H, Stanley R K. Simulation and analysis of 3-D magnetic flux leakage. IEEE Transactions on Magnetics, 2009, 45(4): 1966-1972.
[20]Trevino D A G, Dutta S M, Ghorbel F H, et al. An improved dipole model of 3-D magnetic flux leakage. IEEE Transactions on Magnetics, 2016, 52(12): 1-7.
[21]Huang X M, Wu J B, Sun Y H, et al. 3D magnetic dipole models of magnetic flux leakage for “concave” and “bump” defects. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(4): 1305-1312.
[22]Li Y S, Liu Q Z, Liu J, et al. The unit integral calculation method of defective material’s forward question of magnetic flux leakage detection based on the magnetic dipole model. Transactions of China Electrotechnical Society, 2017, 32(21): 176-185.
[23]Gotoh Y, Takahashi N. 3-D nonlinear eddy-current analysis of alternating magnetic flux leakage testing - analysis of one crack and two cracks. IEEE Transactions on Magnetics, 2002, 38(2): 1209-1212.
[24]Etris S F, Fiorini Y R, Lieb K C, et al. Finite element modeling of magnetic field/defectinteractions. Journal of Testing and Evalution, 1975, 3(1): 21-25.
[25]Zhong W C. Progress of magnetic dipole theory research in China during recent twenty years. Nondestructive Testing, 2000, 22(12): 551-554.
[26]Frster F. New findings in the field of non-destructive magnetic leakage field inspection. NDT International, 1986, 19(1): 3-14.
[27]Huang S L, Sun Y H, Kang Y H. Modern magnetic flux leakage nondestructive testing. Beijing: Machinery Industry Press, 2016: 1-5.
[28]Wang Y, Cheng C, Bai L, et al. Solenoid model for the magnetic flux leakage testing based on the molecular current. IEEE Transactions on Magnetics, 2018, 54(12): 1-14.
[29]Cheng Y, Wang Y, Yu H, et al. Solenoid model for visualizing magnetic flux leakage testing of complex defects. NDT & E International, 2018, 100: 166-174.
[30]Yang L J, Geng H, Gao S W. Magnetic flux leakage internal detection technology of the long distance oil pipeline. Chinese Journal of Scientific Instrument, 2016, 37(8): 1736-1746.
[31]Wu D H, Liu Z T, Wang X H, et al. Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution. Acta Physica Sinica, 2017, 66(4): 266-276.
[32]Babbar V, Shiari B, Clapham L. Mechanical damage detection with magnetic flux leakage tools: modeling the effect of localized residual stresses. IEEE Transactions on Magnetics, 2004, 40(1): 43-49.
[33]Usarek Z, Augustyniak B, Augustyniak M. Separation of the effects of notch and macroresidual stress on the MFL signal characteristics. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
[34]Min X H, Yang L J, Wang G Q, et al. Weak magnetism stress internal testing technology of the long distance oil-gas pipeline. Journal of Mechanical Engineering, 2017, 53(12): 19-27.
[35]Cui w, Wang K, Jiang M Z, et al. Characterization on fluid-solid-magnetic multifield coupling of the weld cracks growth in pipelines. Materials Review, 2018, 32(16): 147-153.
[36]Cui W, Zhang Y H, Zhang Q, et al. A fluid-solid-magnetic coupling method for the crack growth in pipe welds considering the fluid permeation pressure. Materials Reports, 2019, 33(6): 1036-1041.
[37]Wu J B, Wang J, Kang Y H, et al. Influence mechanisms of the induced-magnetic field on the magnetization of steel pipe at high speed. Journal of Mechanical Engineering, 2015, 51(18): 7-12.
[38]Yang L J, Geng H G, Song W, et al. Study on the establishment process and influence factors of high-speed magnetic flux leakage testing. Chinese Journal of Scientific Instrument, 2019, 40(10): 1-9.
[39]Ashley L P, Peter C C, Neil R P, et al. Magnetic flux leakage scanning velocities for fank floor inspection. IEEE Transactions on Magnetics, 2018, 54(9): 1-8.
[40]Feng B, Kang Y, Sun Y, et al. Magnetization time lag caused by eddy currents and its influence on high-speed magnetic flux leakage testing. Research in Nondestructive Evaluation, 2019, 30(4): 189-204.
[41]Wu J, Sun Y, Feng B, et al. The effect of motion-induced eddy current on circumferential magnetization in MFL testing for a steel pipe. IEEE Transactions on Magnetics, 2017, 51(7): 1-6.
[42]Wu D H, You D H, Liu Z L. Mechanism and experimental research on skin depth in AC magnetic flux leakage testing. Chinese Journal of Scientific Instrument. 2014, 35(2): 327-336.
[43]Huang S L. New technology of electromagnetic nondestructive testing. Beijing: Tsinghua University Press, 2014: 125-126.
[44]Li L M, Huang S L, Shi K R. AC and DC magnetizing for magnetic flux leakage testing. Journal of Tsinghua University(Science and Technology), 2002, 42(2): 154-156.
[45]Song K, Chen C, kang Y H, et al. Mechanism study of AC-MFL method using U-shape inducer. Chinese Journal of Scientific Instrument, 2012, 33(9): 1980-1985.
[46]Pan M, Zhou D Q, Chang X. Analysis on characteristics of surface defect detection of new type of pulsed magnetic flux leakage detecting method. Transducer and Microsystem Technologies, 2017, 36(12): 38-41.
[47]Zhou D Q, Zhao J, Chang X, et al. Investigation of pulsed magnetic flux leakage testing based on horizontal magnetic fieldanalysis of rectangular coil. Chinese Journal of Sensors and Actuators, 2017, 30(6): 820-825.
[48]Okolo C K, Meydan T. Axial magnetic field sensing for pulsed magnetic flux leakage hairline crack detection and quantification, In: Proceedings of 2017 IEEE Sensors, Glasgow, 2017: 1-3.
[49]Usarek Z, Chmielewski M, Piotrowski L. Reduction of the velocity impact on the magnetic flux leakage signal. Journal of Nondestructive Evaluation, 2019, 38: 1.
[50]Yang L J, Geng H, Gao S W. Study on high-speed magnetic flux leakage testing technology based on multistage magnetization. Chinese Journal of Scientific Instrument, 2018, 39(6): 148-156.
[51]Wu D H, Liu Z T, Wang X H, et al. Novel MFL method for pipeline crack no blind spot detection using composite excitation. Chinese Journal of Scientific Instrument, 2016, 37(10): 2259-2266.
[52]Wu D, Liu Z, Wang X, et al. Composite magnetic flux leakage detection method for pipelines using alternating magnetic field excitation. NDT & E International, 2017, 91: 148-155.
[53]Pham H Q, Le V S, Vu M H, et al. Design of a lightweight magnetizer to enable a portable circumferential magnetic flux leakage detection system. The Review of Scientific Instruments, 2019, 90(7): 074705.
[54]Kim H M, Park G S. A new sensitive excitation technique in nondestructive inspection for underground pipelines by using differential coils. IEEE Transactions on Magnetics, 2017, 53(11): 1-4.
[55]Kim H M, Yoo H R, Park G S. A new design of MFL sensors for self-driving NDT robot to avoid getting stuck in curved underground pipelines. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
[56]Song S, Sun D L, Chen C, et al. Design and optimization of vector coil sensor suited to magnetometric resistivity method. Journal of Measurement Science and Instrumentation, 2020, 11(1): 45-53.
[57]Pham H Q, Tran B V, Doan D T, et al. Highly sensitive planar hall magnetoresistive sensor for magnetic flux leakage pipeline inspection. IEEE Transactions on Magnetics, 2018, 54(6): 1-5.
[58]Singh W S, Mukhopadhyay C K, Rao B P C. Development of a high sensitive magnetic flux leakage instrument for imaging of localised flaws in small diameter ferromagnetic steel tubes. IET Science, Measurement & Technology, 2018, 12(7): 932-936.
[59]Zhang W M, Yang X, Wang J, et al. Multichannel array magnetic flux leakage testing system using hall devices. Transactions of Beijing Institute of Technology, 2011, 31(6): 647-651.
[60]Wang X H, Wu D H, Li X S, et al. New method of variable excitation MFL testing under the condition of small magnetizing apparatus. Chinese Journal of Scientific Instrument, 2015, 36(1): 70-77.
[61]Wu D H, Li X S, Huang Y M, et al. New nondestructive test method with empirical research using local hysteretic loop characteristics. Chinese Journal of Scientific Instrument, 2015, 36(10): 2207-2214.
[62]Zhang O, Wei X Y. De-noising of magnetic flux leakage signals based on wavelet filtering method. Research in Nondestructive Evaluation, 2019, 30(5): 1-18.
[63]Cao H, Yang L J, Liu J F, et al. Magnetic flux leakage anomaly edge detection based on data fusion and wavelet transformation. Chinese Journal of Scientific Instrument, 2019, 40(12): 71-79.
[64]Feng J, Lu S, Liu J, et al. A sensor liftoff modification method of magnetic flux leakage signal for defect profile estimation. IEEE Transactions on Magnetics, 2017, 53(7): 6201813.
[65]Lu S, Feng J, Li F, et al. Precise Inversion for the reconstruction of arbitrary defect profiles considering velocity effect in magnetic flux leakage testing. IEEE Transactions on Magnetics, 2017, 53(4): 1-12.
[66]Min K H, Geun H C, Ho C S, et al. Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
[67]Feng J, Li F, Lu S, et al. Injurious or noninjurious defect identification from MFL images in pipeline inspection using convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1-10.
[68]Xi G Q, Huang C J, Liu S Q. A multi-sensor data fusion method for nondestructive testing of oil pipelines. Instrumentation Mesure Metrologie, 2019, 18(3): 249-255.
[69]Singh W S, Rao B P, Thirunavukkarasu S, et al. Development of magnetic flux leakage technique for examination of steam generator tubes of prototype fast breeder reactor. Ann. Nucl. Energy, 2015, 83: 57-64.
[70]Liu J, Fu M, Liu F, et al. Window feature-based two-stage defect identification using magnetic flux leakage measurements. IEEE Transactions on Instrumentation and Measurement, 2017, 67(1): 12-23.
[71]Han W H, Xu J, Shen X H, et al. Inversing method of magnetic flux leakage based on cuckoo search algorithm. Journal of Basic Science and Engineering, 2015, 23(6): 1275-1283
[72]Feng J, Li F, Lu S, et al. Fast reconstruction of defect profiles from magnetic flux leakage measurements using a RBFNN based error adjustment methodology. IET Science Measurement & Technology, 2017, 11(3): 262-269.
[73]Feng J, Li F, Lu S, et al. Injurious or noninjurious defect identification from MFL images in pipeline inspection using convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1-10.
[74]Chen J, Huang S, Zhao W. Three-dimensional defect inversion from magnetic flux leakage signals using iterative neural network. IET Science, Measurement & Technology, 2015, 9(4): 418-426.
[75]Huang S L, Peng L, Wang S, et al. A basic signal analysis approach for magnetic flux leakage response. IEEE Transactions on Magnetics, 2018, 54(10): 1-6.
[76]Huang S L. Three-dimensional magnetic flux leakage signal analysis and imaging method for tank floor defect. The Journal of Engineering, 2018, 17: 1865-1870.
[77]Li E L, Kang Y H, Jian T, et al. Analysis on spatial spectrum of magnetic flux leakage using fourier transform. IEEE Transactions on Magnetics, 2018, 54(8): 1-10.
[78]Kandroodi M R, Araabi B N, Bassiri M M, et al. Estimation of depth and length of defects from magnetic flux leakage measurements: verification with simulations, experiments, and pigging data. IEEE Transactions on Magnetics, 2017, 53(3): 1-10.
[79]Wang Z, Yang L, Gao S. Pipeline magnetic flux leakage image detection algorithm based on multi-scale SSD network. IEEE Transactions on Industrial Informatics, 2019, PP(99): 1-1.
漏磁检测技术研究进展
张鹏1, 韦明辉1, 郭智勇2, 刘忠祥1
(1. 西南石油大学 机电工程学院, 四川 成都 610500; 2. 南方科技大学 生物医学工程系, 广东 深圳 518055)
摘要: 漏磁检测技术具有原理简单、 工程实现容易和对被检测工件表面要求不高等特点, 一直是管道无损检测领域的研究热点之一, 尤其在长距离管道检测中被广泛使用。 本文就漏磁场泄露理论、 漏磁场影响因素、 检测技术与设备、 漏磁信号处理等方面对漏磁检测技术的发展进行了论述, 总结了亟待解决的问题以及该技术未来的发展趋势, 旨在为漏磁检测技术的研究和系统研制提供参考与借鉴。
关键词: 无损检测; 漏磁检测; 磁化与检测; 信号处理
引用格式: ZHANG Peng, WEI Minghui, GUO Zhiyong, et al. Advances in magnetic flux leakage testing technology. Journal of Measurement Science and Instrumentation, 2021, 12(1): 1-11. DOI:10.3969/j.issn.1674-8042.2021.01.001
[full text all]