此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Application of a joint algorithm based on L-T to pulse pressure detection signal of fiber Fabry-Perot nano pressure sensor

FENG Fei1,2,  QIN Li1,2


1. Key Laboratory of Instrumentation Science and Dynamic Measurement(North University of China)Ministry of Education, Taiyuan 030051, China2. Science and Technology on Electronic Test & Measurement LaboratoryNorth University of ChinaTaiyuan 030051, China

 

AbstractAn improved denoising method and its application in pulse beat signal denoising are studied. The proposed denoising algorithm takes the advantages of local mean decomposition (LMDand time-frequency peak filtering (TFPF), called L-T algorithm. As a classical time-frequency filtering method, TFPF can effectively suppress random noise with signal amplitude retained when selecting a longer window length, while the signal amplitude will be seriously attenuated when selecting a shorter window length. In order to maintain effective signal amplitude and suppress random noise, LMD and TFPF are improved. Firstly, the original signal is decomposed into progression-free survival PFSby LMD, and then the standard error of mean (SEM) of each product function is calculated to classify many PFSs into useful component, mixed component and noise component. Secondly, by using the shorter window TFPF for useful component and the longer window TFPF for mixed component, noise component is removed and the final signal is obtained after reconstruction. Finally, the proposed algorithm is used for noise reduction of an Fabry-Perot (F-P) pressure sensor. Experimental results show that compared with traditional wavelet, L-T algorithm has better denoising effect on sampled data.

Key wordslocal mean decomposition LMD); time-frequency peak filtering TFPT); noise reduction; Fabry-Perot (F-P) sensor

 

References


1Kario K, Yasui NYokoi HAmbulatory blood pressure monitoring for cardiovascular medicine. Engineering in Medicine and Biology Magazine IEEE, 2003, 22(3)81-88.

2Murayama Y, Haruta M, Hatakeyama Y, et al. Development of a new instrument for examination of stiffness inthe breast using haptic sensor technology. Sensors and Actuators A:  Hysical, 2008, 143(2)430-438.

3Yu W, Gu Q E, Yao X, et al. Experimental study on non-invasive vefiectance oxygen saturation measurement. Chinese Medical Equipment Journal, 2007, 28(10):  4-6.

4Moura N G R, Ferreira A S. Pulse waveform analysis of Chinese pulse images and its association with disability in hypertension. Journal of Acupuncture & Meridion Studies, 2016, 9(2)93-98.

5Koivistoinen T, Lyytikinen L P, Aatola H, et al. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension, 2018, 71(3)451-456.

6Yan H, Wang Y, Liu Z, et al. Feature extraction for pulse waveform in traditional Chinese medicine by hemodynamic analysis. InProceedings of 2009 IEEE International Conference on Bioinformatics and Biomedicine, Washington, DC, USA, 2009.

7Kyriacou P A, Powell S, Langford R M, et al. Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients. Physiological Measurement, 2002, 23(3):  533.

8Tapert S F, Schweinsburg A D, Barlett V C, et al. Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcoholism:  Clinical and Experimental Research, 2004, 28(10):  1577-1586.

9Rodríguez A M, Ramos-Castro J. Video pulse rate variability analysis in stationary and motion conditions. Biomedical engineering online, 2018, 17(1):  11.

10Elbouchikhi E, Choqueuse V, Amirat Y, et al. An efficient Hilbert-Huang transform-based bearing faults detection in induction machines. IEEE Transactions on Energy Conversion, 2017,32(2):  401-413.

11Sukesh R M, Rao R. Experimental investigation on the suitability of flexible pressure sensor for wrist pulse measurement. Health and Technology, 2019, 9(2)143-151.

12Kaajakari V. Practical MEMS, design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Las Vegas, NV:  Small Gear Publishing, 2009.

13Moore A C, Ninkov Z, Forrest W J. Interpixel capacitance in nondestructive focal plane arrays. InProceedings of SPIEFocal Plane Arrays for Space Telescopes, 2004, 5167:  204-215.

14Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Applied Materials & Interfaces, 2019, 11(16)14997-15006.

15Celler B G, Le P, Basilakis J, et al. Improving the quality and accuracy of non-invasive blood pressure measurement by visual inspection and automated signal processing of the Korotkoff sounds. Physiological Measurement, 2017, 38(6):  1006.

16Dagdeviren C, Joe P, Tuzman O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Letters, 2016, 9:  269-281.

17Safaei M, Sodano H A, Anton S R. A review of energy harvesting using piezoelectric materials:  state-of-the-art a decade later (2008-2018). Smart Materials and Structures, 2019, 28(11):  113001.

18Tan G, Dao T K, Farmer L, et al. Heart rate variability (HRV) and posttraumatic stress disorder (PTSD):  a pilot study. Applied Psychophysiology and Biofeedback, 2011, 36(1):  27-35.

19Kachuee M, Kiani M M, Mohammadzade H, et al. Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical Engineering, 2016, 64(4):  859-869

20Kagawa T, Kawamoto A, Nakajima N. Robust wrist-type wireless multiple photo-interrupter pulse sensor. International Journal of Systems Applications, Engineering & Development, 2012, 6(5)325-332.

21Wang D M, Zhang D, Lu G M. An optimal pulse system design by multi-channel sensors fusion. IEEE Journal of Biomedical and Health Informatics, 20151.

22An Y J, Kim B H. Flexible non-constrained RF wrist pulse detection sensor based on array resonators. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(2)300-308.

23Johnson B N, Mutharasan R. Biosensing using dynamic-mode cantilever sensorsA review. Biosensors and Bioelectronics, 2012, 32(1)1-18.

24Tatar E, Torunbalci M M, Alper S E. A method and electrical model for the anodic bonding of SOI and glass wafers. InProceedings of 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, 2012:  68-71.

25Spulak D, Cmejla R, Fabian V. Parameters for mean blood pressure estimation based on electrocardiography and  photoplethysmography. InProceedings of International Conference On Applied Electronics, Pilsen, 2011:  1-4

26Marques F, Ribeiro D D, Colunas M, et al. A real time, wearable ECG and  blood pressure monitoring system. InProceedings of 6th Iberian Conference on IEEE Information Systems and Technologies, Chaves, 20111-4.

27Sahoo A, Manimegalai P, Thanushkodi K. Wavelet based pulse rate and Blood pressure estimation system from ECG and PPG signals. InProceedings of International Conferenece of IEEE Computer  Communication and Electrical Techology, Tamilnadu, 2011:  285-289

28Chmelka L, Kozumplik J. Wavelet-based Wiener filter for electrocardiogram signal  denoising. Computers in Cardiology, 2005, 32771-774

29Mallat S, Huang W L. Singularity detection and Processing with wavelets. IEEE  Transactions on Information Theory1992, 38(2):  617-643


基于L-T的联合算法在光纤法珀纳米压力传感器脉压检测信号中的应用


冯飞12, 秦丽1,2


1. 中北大学  仪器科学与动态测试教育部重点实验室, 山西 太原 0300512. 中北大学 电子测试技术重点实验室, 山西 太原 030051


摘要: 研究了一种改进的去噪方法及其在脉冲拍频信号去噪中的应用。 该算法结合了局部均值分解(Local mean decomposition, LMD)和时频峰值滤波(Time-frequency peak filteringTFPF)的优点, 称为L-T算法。 TFPF作为一种经典的时频滤波方法, 较长的窗长可以在保留信号幅值的前提下有效抑制随机噪声, 而较短的窗长则导致信号幅值严重衰减。 因此, 为了保持有效信号幅度、抑制随机噪声, 对LMDTFPF进行了改进。 首先利用LMD将原始信号分解为无级生存(Progression-free survival, PFS), 然后计算各乘积函数均值的标准误差, 将许多PFSs分为有用分量、混合分量和噪声分量。 其次, 将短窗TFPF用于有用分量去噪, 长窗TFPF用于混合分量去噪, 得到重构后的信号。 最后, 将该算法用于F-P压力传感器的降噪。 实验结果表明, 与传统小波去噪算法相比, L-T算法去噪效果更优。


关键词: 局部均值分解; 时频峰值滤波; 降噪; F-P传感器

 

引用格式:FENG Fei, QIN Li.  Application of a joint algorithm based on L-T to pulse pressure detection signal of fiber Fabry-Perot nano pressure sensor. Journal of Measurement Science and Instrumentation, 2021, 121): 61-67. DOI103969jissn1674-8042202101008


[full ext view]