此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Low energy consumption depth control method of self-sustaining intelligent buoy

ZHENG Di1,2XU Jiayi1,2, LI Xingfei1,2, LI Hongyu1,3


1. State Key Laboratory of Precision Measurement Technology and InstrumentsTianjin UniversityTianjin 300072China

2. Qingdao Institute for Ocean Technology of Tianjin UniversityQingdao 266235China3. College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdao 266590China

 

AbstractAiming at the contradiction between the depth control accuracy and the energy consumption of the self-sustaining intelligent buoy, a low energy consumption depth control method based on historical array for real-time geostrophic oceanography (Argo) data is proposed. As known from the buoy kinematic model, the volume of the external oil sac only depends on the density and temperature of seawater at hovering depth. Hence, we use historical Argo data to extract the fitting curves of density and temperature, and obtain the relationship between the hovering depth and the volume of the external oil sac. Genetic algorithm is used to carry out the optimal energy consumption motion planning for the depth control process, and the specific motion strategy of depth control process is obtained. Compared with dual closed-loop fuzzy PID control method and radial basis function(RBF)-PID method, the proposed method reduces energy consumption to 1/50 with the same accuracy. Finally, a hardware-in-the-loop simulation system was used to verify this method. When the error caused by fitting curves is not considered, the average error is 2.62 m, the energy consumption is 3.214×104 J, and the error of energy consumption is only 0.65%. It shows the effectiveness and reliability of the method as well as the advantages of comprehensively considering the accuracy and energy consumption.


Key wordsself-sustaining intelligent buoy; low energy consumption; depth control; Argo data; genetic algorithm; hardware-in-the-loop simulation system


 

References


1Roemmich D, Owens W B. The Argo projectglobal ocean observations for understanding and prediction of climate variability. Ocanography, 2000, 132)45-50.

2Liu Z H, Wu X F, Xu J P, et al. Fifteen years of ocean observations with China Argo. Advances in Earth Science, 2016, 31(5)445- 460.

3Yu L Z, Shang H M, Zhang S Y. Research on argo buoy technology. Journal of Ocean Technology, 2001(3)34-40.

4Petzrick E, Truman J, Fargher H. Profiling from 6,000 meter with the APEX-Deep float. 2013 OCEANS, San Diego, CA, 20131-3.

5Le Reste S, Dutreuil V, André X, et al. Deep-arvor”:  a new profiling float to extend the argo observations down to 4000-m depth. Journal of Atmospheric and Oceanic Technology, 2016, 33(5):  1039-1055.

6Ma Y T, Zheng R, Yu C. Autonomous underwater vehicle deepening control based on transiting target value nonlinear PID.Control Theory & Applications, 2018, 35(8)1120-1125.

7Healey A J, Lienard D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 1993, 18(3)0-339.

8Yu J, Liu J, Wu Z, et al. Depth control of a bioinspired robotic dolphin based on sliding mode fuzzy control method. IEEE Transactions on Industrial Electronics, 2018, 65(3)2429-2438.

9Huang Z, Zheng H, Wang S, et al. A self-searching optimal ADRC for the pitch angle control of an underwater thermal glider in the vertical plane motion. Ocean Engineering, 2018, 15998-111.

10Yang Y S, Yang Y K, Mu W L, et al. Control strategy of low energy consumption rising and diving motion based on buoyancy actuation system. Journal of Huazhong University of Science& Technology (Natural Science Edition), 2019, 47(6)57-62.

11Mu W, Zou Z, Liu G, et al. Depth control method of profiling float based on an improved double PD controller. IEEE Access, 2019, 743258-43268.

12Zhang H L, Li X F, Yang S B, et al. Dual closed-loop fuzzy PID depth control for deep-sea self-holding intelligent buoy.Information and Control, 2019, 48(2)202-208.

13Fang M Q, Li X F, Jiang M B, et al. RBF-PID depth control of deep-sea profiling floats. Information and control, 2019, 48(6)641-648.  

14Qiu Z, Wang Q, Li H, et al. Depth control for a deep-sea self-holding intelligent buoy under ocean current disturbances based on finite-time boundedness method. IEEE Access, 2019, 7114670-114684.

15Qiu Z R, Wang Q, Yang S B, et al. Depth control for a deep-sea self-holding intelligent buoy systembased on active-disturbance rejection control method. Journal of Measurement Science and Instrumentation, 2020, 11(4)307-316.

16Chen L, Pan B B, Cao Z L, et al. Research status and prospects of automatic profiling floats. Journal of Ocean Technology, 2017, 36(2)1-9.

17Liu M, Yang S, Li H, et al. Energy consumption analysis and optimization of the deep-sea self-sustaining profile buoy. Energies, 2019, 12(12)2316..

18Li Z Q, Liu Z H, Xing X G. User manual for global argo observational data set (V3.0) (1997-2018).2019-08-152020-11-10. ftp//ftp.argo.org.cn/pub/ARGO/global/

19Millero F J, Chen C T, Bradshaw A, et al. A new high pressure equation of state for seawater. Marine Geodesy, 1982, 5(4)367-370.

20Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 1994, 5(1)96-101.

21Meng B Q, Sun F Y. A hybrid genetic algorithm based on optimum maintaining and adaptive genetic algorithm. Numerical Mathematics:  A Journal of Chinese University, 2002, 24(3)244-253.


自持式智能浮标的低功耗悬停控制方法


郑迪1,2, 徐佳毅1,2, 李醒飞1,2, 李洪宇1,3


1. 天津大学 精密测试技术及仪器国家重点实验室, 天津 3000722. 天津大学 青岛海洋技术研究院, 山东 青岛 266235

3. 山东科技大学 海洋科学与工程学院, 山东 青岛 266590


摘要: 针对自持式智能浮标悬停精度与能耗之间的矛盾, 借助地转海洋学实时观测阵(Array for real-time geo strophic oceanography, Argo)计划所观测的历史数据, 提出了一种低功耗的浮标悬停控制方式。 由浮标运动学模型可知, 悬停时浮标外油囊体积只与悬停深度的海水密度、 温度相关, 因此利用Argo历史数据对目标海域进行密度、 温度拟合曲线提取, 得到了悬停深度与外油囊体积的关系。 采用遗传算法对悬停过程进行了能耗最优的运动规划, 最终得到悬停控制过程的具体运动控制方式。 与双闭环模糊PID控制方法和径向基(Radial basis function, RBF)神经网络PID方法对比, 在定深精度相当的情况下, 所提出的方法能够将能耗降至1/50。 最后, 利用半实物仿真系统, 对上述方法进行了实物验证, 在不考虑拟合曲线带来的误差时, 悬停的平均误差为2.62 m, 能耗为3.214×104 J, 能耗与理论值的误差仅为0.65%。 表明了该方法的有效性和可靠性, 以及综合考虑精度和能耗上的优势。


关键词: 自持式智能浮标; 低功耗; 悬停控制; 遗传算法; Argo数据; 半实物仿真系统

 

引用格式:ZHENG DiXU Jiayi, LI Xingfei, et al. Low energy consumption depth control method of self-sustaining intelligent buoy. Journal of Measurement Science and Instrumentation, 2021, 121): 74-82. DOI103969jissn1674-8042202101010


[full text view]