此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Nonlinear dynamic fractional sliding mode control to the motor of mining locomotive

ZHANG Hai-ming1MIAO Zhong-cui2ZHANG Xin2

 

(1. School of Automation and Electrical EngineeringLanzhou Jiaotong University, Lanzhou 730070, China2. School of Mechanical and Electrical Engineering,  Lanzhou Jiaotong University, Lanzhou 730070, China

 

AbstractThe harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor. In order to improve the speed control performance of electric locomotive traction motors, a dynamic fractional-order sliding mode control(DFOSMC) algorithm considering uncertain factors was proposed. A load torque sliding mode observer was designed for the complex load disturbance of the traction motor, and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance. Finally, the stability of the designed controller was proved by Lyapunov's theorem. Besides, the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments. Compared with integer-order sliding mode and fractional-order sliding mode controllers, the dynamic and static performance of the DFOSMC controller with load observation is better, and it has stronger anti-interference ability. The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.

 

Key wordsmine electric locomotivefractional-order sliding mode; load observerdynamic fractional-order sliding mode control (DFOSMC)

 

CLD numberTP273; TD64             doi10.3969/j.issn.1674-8042.2020.04.009

 

References

 

1Zong J, Ruan Y, Xu L B. Simulation of mine traction electrical locomotive control system. Motor and Control Applications, 2013, 40(8)14-18.

2Yang G, Geng H, Wang H G.A Torque control strategy of induction motors taking efficiency of dynamic state into account. Journal of Electrotechnical Society, 2005, 20(7)93-99.

3Feng G, Qi W, Zhang B, et al. Analysis and comparison of three-phase variable frequency PMSM with single-phase induction motor in house hold appliances. In: Proceedings of 2011 International Conference on Electrical Machines and Systems. Beijing:  IEEE Press, 2011:  1-5.

4Li Z K, Ruan Y, Zong J, et al. Design of variable frequency speed regulation control system for dc stringing electric mine locomotive. Motor and Control Applications, 2011, 38(5)27-30.

5Zhang B T, Pi Y G.Fractional order fuzzy sliding mode control for permanent magnet synchronous motor servo drive. Control and Decision, 2012, 27(12):  1776-1780.

6Wang L Q, Lu Q F, Ye Y Y, et al. Fuzzy-PI regulated field oriented control of linear induction motor in urban transit. Control Theory & Applications, 2009, 26(7):  734-738.

7Mei C L, Huang W T, Yin K T, et al. Speed egulating system for induction motor and inverter Based on Hammerstein model Neural network control. Control and Decision, 2015, 30(6):  1148-1152.

8Utkin V I. Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 1993, 40(1):  23-36.

9Chern T L, Wu Y C. Design of integral variable structure controller and application to electrohydraulic velocity servo systems. IEE Proceedings D, 1991, 138(5):  439-444.

10Tan J, Zhou Z, Zhu X P, et al. Attitude control for flying wing unmanned aerial vehicles based on fractional order integral sliding-mode. Control Theory Applications, 2015, 32(5):  607-614.

11Miao Z C, Dang J W, Ju M, et al. Induction motor sensor-less vector control based on fractional order integral sliding mode observer. Electric Machines and Control, 2018, 22(5)84-93.

12Zhang B T, Gao F R, Yao K. Neural network and adaptive algorithm-based fractional order slidingmode controller. Control Theory & Applications, 2016, 33(10):  1373-1377.

13Miao Z C, Zhang W B, Han T L. Fractional order integral sliding mode control for PMSM based on fractional order sliding mode observer. Journal of Measurement Science and Instrumentation, 2019, 10(4):  389-397.

14Monje C A, Chen Y Q, Vinagre B M, et al. Fractional-order systems and controls:  fundamentals and applications. Springer Science & Business Media, 2010.

15Ruan Y, Chen B S. Control system of electric drives motion control system. Beijing:  China Machine Press, 2009.

16Li Z, Hu G D, Cui J R, et al. Sliding-mode variable structure control with integral action for permanent magnet synchronous motor. Journal of China Electromechanical Engineering, 2014, 34(3)431-437.

 

矿用机车牵引电机非线性动态分数阶滑模控制

 

张海明1, 缪仲翠2, 张  鑫2

 

(1. 兰州交通大学 机电工程学院, 甘肃 兰州 7300702. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070

 

 :  矿用电机车恶劣的运行环境和复杂的运行工况会影响机车牵引电机控制性能。 为了提高电机车牵引电机的速度控制性能, 提出了一种考虑不确定因素的动态分数阶积分滑模控制算法。 针对牵引电机复杂的负载扰动设计了负载转矩滑模观测器, 将其观测值融入到动态分数阶滑模控制器中, 以克服负载扰动对控制性能的影响。 然后, 应用Lyapunov定理证明了所设计控制器的稳定性, 并将所设计的动态分数阶滑模控制器与整数阶滑模、 分数阶滑模控制进行了仿真实验对比。 仿真实验表明, 相比于整数阶滑模和分数阶滑模控制器, 带负载观测的动态分数阶积分滑模控制器的动态性能和静态性能更好, 并有较强的抗干扰能力, 可以有效地提高矿用机车牵引电机的控制性能。

 

关键词:  矿用牵引电机; 分数阶滑模; 负载观测器; 动态分数阶滑模控制

 

引用格式:  ZHANG Hai-mingMIAO Zhong-cuiZHANG Xin. Nonlinear dynamic fractional sliding mode control to the motor of mining locomotive.Journal of Measurement Science and Instrumentation, 2020, 114): 373-381. doi10.3969j.issn.1674-8042.2020.04.009

 

[full text view]