此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Three-dimensional atomic force microscopy based on tailored cantilever probe with flared tip

ZHANG Rui1,2WU Sen1,2XIAO Sha-sha1,2HU Xiao-dong1,2SHI Yu-shu3, FU Xing1,2

 

(1. State Key Laboratory of Precision Measurement Technology and InstrumentsTianjin UniversityTianjin 300072China2. Nanchang Institute for Microtechnology of Tianjin UniversityTianjin 300072China3. National Institute of Metrology, Beijing 100029, China

 

AbstractIn order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures, a novel three-dimensional atomic force microscope (3D-AFM) based on flared tip is developed. A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously, and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement. To eliminate the signal deviation caused by AFM-head movement, a traceable optical lever system is designed for cantilever deformation detection. In addition, a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement. The tailored probe is mounted on the 3D-AFM, and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy. The results show the roob-mean-square value of the vertical displacement noise (RMS) of the prototype is less than 0.1 nm and the high/width measurement repeatability (peak-to-peak) is less than 2.5 nm.

 

Key wordsthree-dimensional atomic force microscope (3D-AFM)flared tipscanneroptical levervector scanning

 

CLD numberTH711             doi10.3969/j.issn.1674-8042.2020.04.011

 

 

References

 

1Morimoto T, Kuroda H, Minomoto Y, et al. Atomic force microscopy for high aspect ratio structure metrology. Japanese Journal of Applied Physics, 2002, 41(6S):4238.

2Murayama K, Gonda S, Koyanagi H, et al. Three-dimensional metrology with side-wall measurement using tilt-scanning operation in digital probing AFM. In: Proceedings of Metrology, Inspection, and Process Control for Microlithography XX. International Society for Optical Engineering, 2006: 615216.

3Hussain D, Ahmad K, Song J, et al. Advances in the atomic force microscopy for critical dimension metrology. In: Proceedings of Measurement Science and Technology, 2016, 28(1): 012001.

4Mancevski V, McClure P F. Development of a dual-probe Caliper CD-AFM for near model-independent nanometrology. Metrology, Inspection, and Process Control for Microlithography XVI. International Society for Optical Engineering, 200283-91.

5Foucher J, Thérèse R, Lee Y, et al. Introduction of next-generation 3D AFM for advanced process control. In: Proceedings of SPIE Advanced Lithography, International Society for Optics Engineering, 2013868106.

6Foucher J, Filippovb P, Penzkoferb C, et al. Manufacturing and advanced characterization of sub-25nm diameter CD-AFM probes with sub-10nm tip edges radius. InProceedings of SPIE Advanced Lithography. International Society for Optical Engineering, 201386811I-86811I-86816.

7Dixson R, Ng B P, Orji N. Effects of lateral tip control in CD-AFM width metrology. Measurement Science and Technology, 2014, 25(9)094003.

8Murayama K, Gonda S, Koyanagi H, et al. Side-wall measurement using tilt-scanning method in atomic force microscope. Japanese Journal of Applied Physics, 2006,45(6S)5423-5428.

9Cho S J, Ahn B W, Kim J, et al. Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy. Review of Scientific Instruments, 2011,82(2)023707.

10Xie H, Hussain D, Yang F, et al. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning. Ultramicroscopy, 2015, 1588-16.

11Xie H, Hussain D, Yang F, et al. Development of three-dimensional atomic force microscope for sidewall structures imaging with controllable scanning density. IEEE/ASME Transactions on Mechatronics, 2016, 21(1)316-328.

12Martin Y, Wickramasinghe H K. Method for imaging sidewalls by atomic force microscopy. Applied Physics Letters, 1994, 64(19)2498-2500.

13Dai G, Hssler-Grohne W, Hüser D, et al. New developments at PTB in 3D-AFM with tapping and torsion AFM mode and vector approach probing strategy. In: Proceedings of SPIE Defense, Security, and Sensing, International Society for Optical Engineering, 201180360V.

14Dai G, Hssler-Grohne W, Hüser D, et al. Development of a 3D-AFM for true 3D measurements of nanostructures. Measurement Science and Technology, 2011, 22(9)094009.

15Liu H, Klonowski M, Kneeburg D, et al. Advanced atomic force microscopy probes:  Wear resistant designs. Journal of Vacuum Science & Technology B:  Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(6)3090-3093.

16Foucher J, Faurie P, Dourthe L, et al. Hybrid Metrology & 3D-AFM Enhancement for CD Metrology Dedicated to 28 nm Node and Below Requirements. In: Proceedings of AIP Conference American Institute of Physics, 2011763802.

17Foucher J, Schmidt S W, Penzkofer C, et al. Overcoming silicon limitations:  new 3D-AFM carbon tips with constantly high-resolution for sub-28nm node semiconductor requirements. In: Proceedings of  Metrology, Inspection, and Process Control for Microlithography XXVI, International Society for Optical Engineering, 2012832432.

18Ageev O A, Bykov A V, Kolomiitsev A S, et al. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes. Semiconductors, 2015, 49(13)1743-1748.

19Zhang R, Wu S, Liu L, et al. A CD probe with a tailored cantilever for 3D-AFM measurement. Measurement Science and Technology, 2018, 29(12)125011.

20Zhang R, Wu S, Liu L, et al. Adaptive-angle-scanning method for three-dimensional measurement with AFM. Measurement Science and Technology, 2019,30(9)095005.

21Liu Y, Shan J, Gabbert U, et al. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Materials and Structures, 2013, 22(11)115020.

 

一种基于改进型裙摆探针的三维原子力显微技术

 

 1,2, 吴  森1,2, 肖莎莎1,2, 胡晓东1,2, 施玉书3, 傅  星1,2

 

(1. 天津大学 精密测试技术及仪器国家重点实验室, 天津 3000722. 天津大学 南昌微技术研究院, 天津 3000723. 中国计量科学研究院, 北京 100029

 

 要:  针对微纳米结构的真三维形貌无损检测需求, 研制了基于裙摆型针尖(Flared tip)的三维原子力显微镜(3D-AFM)。  设计了一种高精度扫描平台结构, 通过同时移动探针和样品实现快速伺服反馈, 并利用组合式纳米定位台来保证位移的线性度和正交性。 为了消除因AFM测头移动引起的信号偏差, 设计了随动式光杠杆系统用于检测悬臂梁的形变量。 此外, 提出了一种基于商用裙摆探针的悬臂梁裁剪方法, 可减小测量过程中针尖横向受力。 将改进型探针安装到3D-AFM系统上, 利用自适应矢量逼近扫描策略进行了多种样品的3D测量实验。 实验结果表明, 样机的垂直方向位移噪声(RMS)优于0.1 nm, 高/宽测量重复性(峰峰值)优于2.5 nm

 

关键词:  三维原子力显微镜; 裙摆型针尖; 扫描器; 光杠杆; 矢量扫描

 

引用格式:  ZHANG RuiWU SenXIAO Sha-shaet al. Three-dimensional atomic force microscopy based on tailored cantilever probe with flared tip. Journal of Measurement Science and Instrumentation, 2020, 114):  388-396. doi:  10.3969j.issn.1674-8042.2020.04.011

 

[full view text]