CHEN Bao-jie1,2, JIA Ping-gang1,2, QIAN Jiang1,2, FENG Fei1,2, HONG Ying-ping1,2, LIU Wen-yi1,2, XIONG Ji-jun1,2
(1. Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China),Ministry of Education, Taiyuan 030051, China;2. Science and Technology on Electronic Test & Measurement Laboratory, North University of China,Taiyuan 030051, China)
Abstract: An active temperature compensated fiber Bragg grating (FBG) vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration, and the sensor is verified by a temperature compensation feedback system. The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating. The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration. On this basis, the performance of the sensor is tested and analyzed within the range of 20-400 ℃ by setting up a high-temperature vibration test system. The experimental results show that the sensitivity of the sensor is about 132.33 mV/g, and the nonlinearity is about 3.33%. The sensitivity between the laser wavelength and temperature is about 0.013 07 nm/℃. In addition, the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure, stable performance, easy demodulation and high sensitivity. Moreover, the sensor can achieve high temperature vibration signal monitoring and has good practical application value.
Key words: fiber Bragg grating (FBG); vibration sensor; active temperature compensation; cantilever beam; feedback control
CLD number: TP273 doi: 10.3969/j.issn.1674-8042.2020.04.012
References
[1]Vohra S, Johnson G, Todd M, et al. Distributed strain monitoring with arrays of fiber Bragg grating sensors on an in-construction steel box-girder bridge. IEICE transactions on Electronics, 2000, 83(3): 454-461.
[2]Sohn K R, Shim J H. Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever. Sensors and Actuators A: Physical, 2009, 152(2): 248-251.
[3]Rao Y J. Recent progress in applications of in-fibre Bragg grating sensors. Optics and Lasers in Engineering, 1999, 31(4): 297-324.
[4]Neumann M, Dreier F, Günther P, et al. A laser-optical sensor system for blade vibration detection of high-speed compressors. Mechanical Systems and Signal Processing, 2015, 64: 337-346.
[5]Salzer S, Jahns R, Piorra A, et al. Tuning fork for noise suppression in magnetoelectric sensors. Sensors and Actuators A: Physical, 2016, 237: 91-95.
[6]Kon S, Oldham K, Horowitz R. Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. In: Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, International Society for Optics and Photonics, 2007: 6529.
[7]Kim K, Zhang S, Salazar G, et al. Design, fabrication and characterization of high temperature piezoelectric vibration sensor using YCOB crystals. Sensors and Actuators A: Physical, 2012, 178: 40-48.
[8]Abarca-Jiménez G S, Reyes-Barranca M A, Mendoza-Acevedo S, et al. Modal analysis of a structure used as a capacitive MEMS accelerometer sensor. In: Proceedings of 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE, 2014: 1-4.
[9]Zhang Z, Bao X. Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system. Optics Express, 2008, 16(14): 10240-10247.
[10]James S W, Tatam R P. Optical fibre long-period grating sensors: characteristics and application. Measurement Science and Technology, 2003, 14(5): R49.
[11]Wada A, Tanaka S, Takahashi N. Optical fiber vibration sensor using FBG Fabry-Perot interferometer with wavelength scanning and Fourier analysis. IEEE Sensors Journal, 2011, 12(1): 225-229.
[12]He T, Ran Y, Liu T, et al. Distributed temperature/vibration fiber optic sensor with high precision and wide bandwidth. IEEE Photonics Journal, 2019, 11(6): 1-11.
[13]Lan L, Dong X Y, Zhao C L, et al. Simply-supported beam-based fiber Bragg grating vibration sensor. Infrared and Laser Engineering, 2011, 40(12): 2497-2500.
[14]Li T, Tan Y, Zhou Z, et al. Study on the non-contact FBG vibration sensor and its application. Photonic Sensors, 2015, 5(2): 128-136.
[15]Chah K, Caucheteur C, Mégret P, et al. Reflective polarimetric vibration sensor based on temperature-independent FBG in HiBi microstructured optical fiber. In: proceedings of Optical Sensing and Detection III, International Society for Optics and Photonics, 2014: 9141.
[16]Casas-Ramos M A, Sandoval-Romero G E. Cantilever beam vibration sensor based on the axial property of fiber Bragg grating. Smart Structures and Systems, 2017, 19(6): 625-631.
[17]Tanaka S, Somatomo H, Wada A, et al. Fiber-optic mechanical vibration sensor using long-period fiber grating. Japanese Journal of Applied Physics, 2009, 48(7S): 07GE05.
[18]Zhang Z Z, Liu C T. Design of vibration sensor based on fiber bragg grating. Photonic Sensors, 2017, 7(4): 345-349.
[19]Khan M M, Panwar N, Dhawan R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation. Sensors and Actuators A: Physical, 2014, 205: 79-85.
[20]Zhang L C, Jiang Y, Jia J S. Fiber-optic micro vibration sensors fabricated by a femtosecond laser. Optics and Lasers in Engineering, 2018, 110: 207-210.
[21]Wang X F, Guo Y X, Xiong L. Hybrid fiber Bragg grating sensor for vibration and temperature monitoring of a train bearing. Chinese Optics Letters, 2018, 16(7): 27-32.
[22]Hamid N H A, Kamal M M, Yahaya F H. Application of PID controller in controlling refrigerator temperature. In: proceedings of 5th International Colloquium on Signal Processing & its Applications, IEEE, 2009: 378-384.
[23]Ren F F, Zhang W F, Li Y W. The Temperature Compensation of FBG Sensor for Monitoring the Stress on Hole-Edge. IEEE Photonics Journa. 2018, 10(4): 1-9.
[24]Rao Y J. Fiber Bragg grating sensors: principles and applications. Optical Fiber Sensor Technology, Springer, Boston, MA, 1998: 355-379.
基于主动温度补偿的高温光纤布拉格光栅振动传感器
陈宝杰1,2, 贾平岗1,2, 钱 江1,2, 冯 飞1,2, 洪应平1,2, 刘文怡1,2, 熊继军1,2
(1. 中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051;2. 中北大学 电子测试技术重点实验室, 山西 太原 030051)
摘 要: 提出了一种基于主动温度补偿的等截面悬臂梁式光纤布拉格光栅(FBG)振动传感器, 可用于同时测量温度和振动, 并通过温度补偿反馈解调系统对该传感器进行了实验验证。 该高温振动传感器由石英悬臂梁和飞秒布拉格光栅组成。 采用了主动温度补偿的反馈控制解调系统, 可以不断地调节激光波长来稳定光栅偏置点, 并实现温度和振动的同时测量。 在此基础上, 通过搭建高温振动测试系统, 在20-400 ℃的温度范围内对传感器的性能进行测试和分析。 实验结果表明传感器的灵敏度约为132.33 mV/g, 线性度约为3.33%, 激光波长与温度之间的灵敏度约为0.013 07 nm/℃。 另外, 该主动温度补偿光纤布拉格光栅振动传感系统具有结构简单, 性能稳定, 易于解调, 灵敏度高的优点。 该传感器可以实现高温振动信号的监测, 具有良好的实际应用价值。
关键词: 布拉格光栅; 振动传感器; 主动温度补偿; 悬臂梁; 反馈控制
引用格式: CHEN Bao-jie, JIA Ping-gang, QIAN Jiang, et al. An active temperature compensated fiber Bragg grating vibration sensor for high-temperature application. Journal of Measurement Science and Instrumentation, 2020, 11(4): 397-404. [doi: 10.3969/j.issn.1674-8042.2020.04.012]
[full text view]