YU Shuo1,2, TAN Ying-xin3
(1. School of Intelligent Engineering, Shenyang City University, Shenyang 110112, China;2. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China;3. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)
Abstract: In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane (RDX), the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions. The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods, respectively, and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature. The results show that the initial decomposition temperature range, decomposition peak temperature range, and decomposition completion temperature range of RDX are 208.4-214.2, 225.7-239.3 and 234.0-252.4 ℃, respectively, and the average decomposition enthalpy is 362.9 J·g-1. Kissinger method was used to calculate the DSC experimental data of RDX, the apparent activation energy obtained is 190.8 kJ·mol-1, which is coincident with the results calculated by Ozawa method at the end of the reaction, indicating that the apparent activation energy calculated by the two methods is relatively accurate. When the packaging mass values are 1.0, 2.0 and 5.0 kg, respectively, the self-accelerating decomposition temperatures are 97.0, 93.0 and 87.0 ℃, respectively, indicating that with the increase of packaging mass, the self-accelerating decomposition temperature gradually decreases, and the risk increases accordingly.
Key words: 1,3,5-trinitro-1,3,5-triazinane (RDX); differential scanning calorimetry (DSC); thermal decomposition; kinetics
CLD number: TQ560.72
doi: 10.3969/j.issn.1674-8042.2020.03.003
References
[1]Hamid S, Sajjad D, Mohsen R, et al. The effect of HMX impurity and irganox antioxidant on thermal decomposition kinetics of RDX by TG/DSC non-isothermal method. Propellants, Explosives, Pyrotechnics, 2019, 44(4): 429-437.
[2]Michalsen M M, King A S, Istok J D, et al. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. Journal of Hazardous Materials, 2020, 387: 121529.
[3]Zhao Y, Zhao F Q, Xu S Y, et al. Molecular reaction dynamics simulation of thermal decomposition for aluminiferous RDX composites. Computational Materials Science, 2020, 177: 1-8.
[4]Lee J S, Hsu C K, Chang C L. A study of thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochimica Acta, 2002: 392-393.
[5]Chen G, Hao G, Xiao K, et al. Preparation, characterization of RDX/GAP nanocomposites, and study on the thermal decomposition behavior. Journal of Energetic Materials, 2019, 37(1): 80-89.
[6]Yan Q L, Zeman V, Zhao F Q, et al. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 2014, 271: 185-195.
[7]Jin S H, Song Q C. Thermal decomposition of the mixtures of RDX、 HMX and organic flame retardants. Chinese Journal of Explosives & Propellants, 1999, (1): 28-31.
[8]Ding Y K, Wu Y, Wang H D, et al. Effects of TNT on the thermal decomposition performance of RDX. Explosive Materials, 2014, 43(5): 21-25.
[9]Li C F, Zheng M, Zhao F Q, et al. Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles. Physical Chemistry Chemical Physics, 2018, 20(20): 14192-14199.
[10]Kim S H, Nyande B W, Kim H S, et al. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B. Journal of Hazardous Materials, 2016, 308(5): 120-30.
[11]Xu Y B, Tan Y X, Cao W G, et al. Thermal decomposition characteristics and thermal safety of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate based on microcalorimetric experiment and decoupling method. The Journal of Physical Chemistry C, 2020, 124 (11): 5987-5998.
[12]Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 1956, 57: 217.
[13]Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
[14]Arjun S, Tirupati C S, Mahesh K, et al. Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices. Defence Technology, 2017, 13(1): 22-32.
[15]Michalsen M M, King A S, Istok J D, et al. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. Journal of Hazardous Materials, 2020, 387: 121529.
[16]Tong Y, Liu R, Zhang T L. The effect of a detonation nanodiamond coating on the thermal decomposition properties of RDX explosives. Physical Chemistry Chemical Physics, 2014, 16(33): 17648-17657.
[17]Chen X, Franklin G C. Predictive kinetics for the thermal decomposition of RDX. Proceedings of the Combustion Institute, 2019, 37(3): 3167-3173.
[18]Lu G B, Zhang C X, Chen L P, et al. Kinetic analysis and self-accelerating decomposition temperature (SADT) of β-nitroso-α-naphthol. Process Safety and Environmental Protection, 2015, 95: 69-76.
基于差示扫描量热实验对1,3,5-三硝基-1,3,5-三氮杂环己烷热分解的测试研究
于硕1,2, 谭迎新3
(1. 沈阳城市学院 智能工程学院, 辽宁 沈阳 110112; 2. 中北大学 化学工程与技术学院, 山西 太原 030051;3. 中北大学 环境与安全工程学院, 山西 太原 030051)
摘要:为了对1,3,5-三硝基-1,3,5-三氮杂环己烷 (RDX)的热分解进行测试研究, 通过差示扫描量热仪在不同升温速率条件下对RDX进行线性升温实验,采用Kissinger法和Ozawa法分别对RDX的热分解曲线进行动力学计算, 并结合热分析软件计算自加速分解温度等参数。 结果表明, RDX的初始分解温度、 分解峰温、 分解完成温度范围分别为208.4-214.2 ℃、 225.7-239.3 ℃和234.0-252.4 ℃, 分解焓平均为362.9 J·g-1。 采用Kissinger法对RDX的DSC实验数据进行计算, 得出的表观活化能为190.8 kJ·mol-1, 与Ozawa法计算的结果在反应末期重合, 表明两种方法计算的表观活化能较为准确。 在包装质量分别为1.0、 2.0和5.0 kg时, 其自加速分解温度为97.0、 93.0和87.0 ℃, 表明随着包装质量的增加, 自加速分解温度逐渐降低, 危险性随之增大。
关键词:1,3,5-三硝基-1,3,5-三氮杂环己烷; 差示扫描量热仪; 热分解; 动力学
引用格式: YU Shuo, TAN Ying-xin. Research on thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane based on differential scanning calorimetry. Journal of Measurement Science and Instrumentation, 2020, 11(3): 217-221. [doi:10.3969/j.issn.1674-8042.2020.03.003]
[full text view]