ZHANG Zi-qi1,2, TIAN Ming-xing1,2, SUN Li-jun1,2, GAO Yun-bo1,2
(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: There is a certain coupling relationship among the main circuit parameters of a single-phase shunt active power filter (SAPF), which has a great influence on the reasonable selection of various parameter values. By analyzing the calculation methods of the inductance of alternating current (AC) side and the voltage and capacitance values of direct current (DC) side in the existing single/three-phase SAPF main circuit, a specific single-phase SAPF circuit parameter analytical expression was obtained. Aiming at the coupling relationship among the variables in the resulting expression, the model was optimized and analyzed in MATLAB, and a complete set of parameters design scheme was obtained, which ensure the comprehensive optimization target of the post-harmonic content below 2% is compensated under a specific load. The simulation and experimental procedures verify the correctness of the selected parameters.
Key words: shut active power filter (SAPF); coupling relationship; parameter design scheme
CLD number: TM46 doi: 10.3969/j.issn.1674-8042.2020.02.006
References
[1]Luo A, Ren Z, Wu C P. State of harmonic compensation technology and its development. High Power Conversion Technology, 2011, 1(6): 1-5.
[2]Xiao L P, Tong C N, Gao R Q. An improved hysteretic current method for active power filter. Automation of Electric Power Systems, 2014, 38(12): 119-123.
[3]Zhai J Y, Chen M, Xu J, et al. The AC side output filter design of shunt active power filter. Electric Machines and Control, 2010, 14(10): 15-20.
[4]Zhao W, Tian M X, Zhao Q C. Design of single-phase active filter controller based on DSP 28335. Power Electronics, 2012, 46(1): 58-59.
[5]Peng F Z, Ott G W, Adams D J. Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems. In: Proceedings of IEEE Annual Power Electronics Specialists Conference, 1997, 13(6): 1089-1095.
[6]Wang Z A, Yang J, Liu J J, et al. Harmonic suppression and reactive power compensation. Beijing: Mechanical Industry Press, 2005: 150-295.
[7]Xu D, Fang H, Lee Y S, et al. Active power filter with optimal DC side condenser. In: Proceedings of IEEE Power Electronics Specialists Conference, 2010: 1167-1170.
[8]Wei J J, Hu Z G, Ai Y L. Causes and stability control of voltage fluctuation on APF DC side. Journal of Henan Polytechnic University (Natural Science Edition), 2015, 34(4): 532-536.
[9]Tian M X, Yang X, Yan H, et al. Calculation formula of AC inductance rating of shunt active power filter based on harmonic characteristics of load current. Electric Power Automation Equipment, 2013, 33(10): 90-94.
[10]Zhang G R, Shen Q. Analysis and design of relationship between DC side capacitance and voltage fluctuation of single-phase active power filter. Automation of Electric Power Systems, 2015, 39(4): 110-115.
[11]Quan H L, Liu Z G, Zhang G, et al. Design of key parameters of main circuit of shunt active power filter. Transactions of China Electrotechnical Society, 2011, 26(12): 106-112.
[12]Du T H, Hu X B, Zhao C, et al. Compensated current control and main circuit parameter design of active power filter. Electrical Apparatus and Energy Efficiency Management, 2010, (6): 51-56.
[13]Zeng G H. Research on new traction power supply system for railway based on three-phase/single-phasee quilibrium transformation. Beijing: Beijing Jiaotong University, 2012: 95-109.
[14]Zhang G R, Qi G H, Su J H, et al. A new method of selecting output inductance for shunt active power filter. Proceedings of the CSEE, 2010, 30(6): 22-27.
[15]Shen Q. Research on single-phase shunt active power filter. Hefei: Hefei University of Technology, 2015.
[16]He K C. Research on main circuit parameter design of shunt active power filter based on load characteristics. Lanzhou: Lanzhou Jiaotong University, 2017.
[17]He K C, Tian M X, Hui L L. The determination of active power filter DC side condenser based on the load characteristics. International Journal of Electrical Engineering, 2016, 23(4): 159-164.
[18]Wang J Y, Yu H Y. Analysis of characteristics of APF DC side circuit parameters. In: Proceedings of Academic Conference on Power Systems and Automation in Universities in China, Hefei, 2007.
单相并联型有源电力滤波器主电路参数耦合关系研究
张子麒1,2, 田铭兴1,2, 孙立军1,2, 高云波1,2
(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070;2. 甘肃省轨道交通电气自动化工程实验室(兰州交通大学), 甘肃 兰州 730070)
摘 要: 单相并联型有源电力滤波器(SAPF)主电路参数之间存在一定的耦合关系, 这对各参数值的合理选择有较大的影响。 通过分析现有单/三相SAPF主电路交流侧电感以及直流侧电压、 电容值等参数的计算方法, 得到了具体的单相SAPF电路参数解析表达式。 针对所得表达式各变量之间的耦合关系, 在MATLAB中进行建模优化分析, 得出一套完整的参数设计方案。 保证在特定负载下补偿后谐波含量低于2%的综合优化目标。 仿真和实验过程验证了所选参数的正确性。
关键词: 并联型有源电力滤波器(SAPF); 耦合关系; 参数设计方案
引用格式: ZHANG Zi-qi, TIAN Ming-xing, SUN Li-jun, et al. Research on main circuit parameter coupling relationship of single-phase shunt active power filter. Journal of Measurement Science and Instrumentation, 2020, 11(2): 143-151. [doi: 10.3969/j.issn.1674-8042.2020.02.006]
[full text view]