YU Juan1,2, ZHANG Bin-zhen1,2, DUAN Jun-ping1,2
(1. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China; 2. School of Instrument and Electronics, North University of China, Taiyuan 030051, China)
Abstract: Thermosensitive strontium titanate (SrTiO3) as a ferroelectric crystal with great tunability in microwave and terahertz band shows unparalleled potential value. Utilizing the thermal electromagnetic tunability to achieve the intelligent manipulation, a thermal-tunable metamaterial with terahertz-band absorption based on SrTiO3 crystal was proposed in this paper. The absorbent metamaterial (AM) is formed by Floquet’s linear periodic arranged unit, which is composed of a metallic ground plane and embedded cross SrTiO3 material in rhombic metallic patch, and separated by FR-4 dielectric spacer. The broadband frequency tunability of AM was operated by changing the temperature. The permittivity of SrTiO3 was discussed in detail to illustrate how the reconfigurability with thermal transformation is generated. The numerical results show that the tunable broadband of the absorbent band has reached 90 GHz and the corresponding absorptivity is above 99% when the temperature increases from 280 K to 360 K. The resonance frequency will produce a blue-shift with the increase of the temperature. This paper presents a passive thermal-tunable metamaterial as a potential candidate for sensing, materials detection and frequency selective thermal emitters.
Key words: metamaterial; strontium titanate (SrTiO3); terahertz-band; thermal-tunable absorption
CLD number: TB34; TB383 doi: 10.3969/j.issn.1674-8042.2020.02.010
References
[1]Smith D R. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788-792.
[2]Dolling G, Wegener M, Soukoulis C M, et al. Negative-index metamaterial at 780 nm wavelength. Optics Letters, 2007, 32(1): 53-55.
[3]Brunet T, Merlin A, Mascaro B, et al. Soft 3D acoustic metamaterial with negative index. Nature Materials, 2014, 14(4): 384-388.
[4]Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977-980.
[5]Kim Y, Seo I, Koh I S, et al. Design method for broadband free-space electromagnetic cloak based on isotropic material for size reduction and enhanced invisibility. Optics Express, 2016, 24(20): 22708.
[6]Sunbeam Islam S, Mohammd R I F, Tariqul Islam M. An ENG metamaterial based wideband electromagnetic cloak. Microwave and Optical Technology Letters, 2016, 58(10): 2522-2525.
[7]Zhou Y. A study of electromagnetic absorbers and cloaks for the reduction of electromagnetic scattering. Pennsylvania: Pennsylvania State University, 2015.
[8]Bisht M S, Rajput A, Srivastava K V. Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters. Applied Physics A, 2018, 124(4): 300.
[9]Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969.
[10]Madl T. Patchy proteins form a perfect lens. Science, 2017, 357(6351): 546-547.
[11]Rosenblatt G, Orenstein M. Power drainage and energy dissipation in lossy but perfect lenses. Physical Review A, 2017, 95(5): 053857.
[12]Kordi M, Mirsalehi M M. Investigation of a metamaterial slab lens and an imaging system based on an ellipsoidal cavity. Applied Optics, 2017, 56(16): 4772-4778.
[13]Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402.
[14]Luo X. Catenary optical fields and dispersion for perfect absorption of light. Singapore: Springer, 2019.
[15]Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773-4776.
[16]Alù A, Engheta N. Achieving transparency with plasmo nic andmetamaterial coatings. Physical Review E, 2005, 72(1): 016623.
[17]Marqués R, Martin F, Sorolla M. Metamaterials with negative parameters: theory, design, and microwave applications. New York: John Wiley & Sons, 2011.
[18]Tao H, Padilla W J, Zhang X, et al. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 17(1): 92-101.
[19]Tao H, Kadlec E A, Strikwerda A C, et al. Microwave and terahertz wave sensing with metamaterials. Optics Express, 2011, 19(22): 21620-21626.
[20]Chen H T, O'hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295-298.
[21]Yahiaoui R, Hanai K, Takano K, et al. Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators. Optics Letters, 2015, 40(13): 3197-3200.
[22]Florous N J, Saitoh K, Koshiba M. Light-wave guidance through stratified photonic crystal metamaterials synthesized by super-inductive layers of metallic nano-strips. Optics Letters, 2006, 31(9): 1226-1228.
[23]Takayama O, Bogdanov A A, Lavrinenko A V. Photonic surface waves on metamaterial interfaces. Journal of Physics: Condensed Matter, 2017, 29(46): 463001.
[24]Segal N, Keren-Zur S, Hendler N, et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180-184.
[25]Cong L, Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Applied Physics Letters, 2015, 106(3): 031107.
[26]Wang B X, Zhai X, Wang G Z, et al. Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal, 2014, 7(1): 1-8.
[27]He X, Zhong X, Lin F, et al. Investigation of graphene assisted tunable terahertz metamaterials absorber. Optical Materials Express, 2016, 6(2): 331-342.
[28]Carranza I E, Grant J P, Gough J, et al. Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(4): 1-8.
[29]Wang B X. Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(4): 1-7.
[30]Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B, 2008, 78(24): 1879-1882.
[31]Zhang Y, Feng Y, Zhu B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Optics Express, 2014, 22(19): 22743-22752.
[32]Xu B, Gu C, Li Z, et al. A novel structure for tunable terahertz absorber based on graphene. Optics Express, 2013, 21(20): 23803-23811.
[33]Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber. Physical Review Letters, 2013, 110(17): 177403.
[34]Xu Z C, Gao R M, Ding C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber. Optical Materials, 2015, 42: 148-151.
[35]Kuel P, Kadlec F. Tunable structures and modulators for THz light. Comptes Rendus Physique, 2008, 9(2): 197-214.
[36]Němec H, Kuel P, Duvillaret L, et al. Highly tunable photonic crystal filter for the terahertz range. Optics Letters, 2005, 30(5): 549-551.
基于钛酸锶的可调太赫兹超材料吸波器设计
于 娟1,2, 张斌珍1,2, 段俊萍1,2
(1. 中北大学 电子测试技术重点实验室, 山西 太原 030051; 2. 中北大学 仪器与电子学院, 山西 太原 030051)
摘 要: 热敏钛酸锶(SrTiO3)作为铁电晶体, 在微波和太赫兹波段有很强的可调性, 具有潜在价值。 利用热电磁的可调性实现智能操作, 提出了一种基于SrTiO3晶体的具有太赫兹波段吸收的热可调超材料。 吸收超材料(AM)由Floquet线性周期排列单元形成, 该单元由金属接地平面和菱形金属贴片中嵌入的交叉SrTiO3材料组成, 并由FR-4介电层隔开。 该超材料吸波器通过改变温度来实现频率的可调。 详细讨论了SrTiO3的介电常数, 以说明如何产生与热转换的可重构性。 数值结果表明, 当温度从280 K增加到360 K时, 吸收带的可调谐带宽达到90 GHz, 相应的吸收率达到99%以上。 随着温度的升高, 共振频率将产生蓝移。 本文提出的被动热可调谐超材料可作为传感、 材料检测和频率选择性热发射器的潜在候选材料。
关键词: 超材料; SrTiO3; 太赫兹频段; 热可调吸收
引用格式: YU Juan, ZHANG Bin-zhen, DUAN Jun-ping. Design of tunable terahertz metamaterial absorber based on strontium titanate. Journal of Measurement Science and Instrumentation, 2020, 11(2): 177-185. [doi: 10.3969/j.issn.1674-8042.2020.02.010]
[full text view]