CAO Zhi-bin, YANG Wei, SHAO Xing-ling, LIU Ning
(Key Lab of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China)
Abstract: For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot, a trajectory tracking controller based on global fast terminal sliding mode method is proposed, which has the advantages of chattering-free and adjustable convergence time. First of all, the kinematics model of the robot is established in mobile carrier coordinates. Secondly, the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory, ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time. Finally, the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly, but also avoid the obstacles. The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory.
Key words: trajectory tracking; global fast terminal sliding mode; adjustable convergence time; chattering free; artificial potential field method
CLD number: TP242 doi: 10.3969/j.issn.1674-8042.2020.01.010
References
[1]Zhu L L, Chen J. A review of wheeled mobile robots. Machine Tool & Hydraulics, 2009, 37(8): 242-247.
[2]Ma H T. The motion control of nonholonomic wheeled mobile. University of Science and Technology of China, 2009.
[3]Zhao B B, Xu X S, Zhang F Y. Fault diagnosis of sensor of mobile robot based on EMA-UKF method. Science Technology and Engineering, 2017, 17(5): 230-236.
[4]Han G G, Chen H, Ma M M, et al. Non-linear model predictive control of trajectory tracking for nonholonomic mobile robots with constraints. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(1): 177-181.
[5]Li C J, Wang F. Review of navigation control technology of intelligent mobile robot. Navigation Positioning & Timing, 2016, 3(5): 22-26.
[6]Kanayama Y J, Kimura Y, Miyazaki F, et al. A stable tracking control method for an autonomous mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation, 1990: 384-389.
[7]Wit C C, Sordalen O J. Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Transactions on Automatic Control, 1992, 37(11): 1791-1797.
[8]Yang J M, Kim J H, Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics Automation, 1999, 15(3): 578-587.
[9]Li S H, Tian Y P. Finite time tracking control algorithm for nonholonomic mobile robots. Control and Decision, 2005, 20(7): 750-754.
[10]Xiong J J, Zhang G B. Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Transactions, 2017, 66(1): 233-240.
[11]Huang W, Yang Y N, Hua C C. Fixed-time tracking control approach design for nonholonomic mobile robot. In: Proceedings of 35th Chinese Control Conference, Chengdu, 2016: 3423-3428.
[12]Zhang Y M, Liu G R, Luo B. Finite-time cascaded tracking control approach for mobile robots. Information Sciences, 2014, 284(10): 31-43.
[13]Pei J F, Wang H, Xu D Z. Tracking control of mobile robot based on iterative learning control. Computer Engineering and Applications, 2012, 48(9): 222-225.
[14]Wang H, Hu L K, Tan Y. A PSO-based global fast terminal sliding mode controller for 6-DOF manipulators. CAAI Transactions on Intelligent Systems, 2017, 12(2): 266-271.
[15]Awad A, Wang H P. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control. Chinese Journal of Aeronautics, 2016, 29(5): 1302-1312.
[16]Yao Y, Zhou X S, Zhang K L, et al. Dynamic trajectory planning for unmanned aerial vehicle based on sparse A* search and improved artificial potential field. Control Theory & Applications, 2010, 27(7): 953-959.
基于快速终端滑模的机器人轨迹跟踪避障方法
曹志斌, 杨 卫, 邵星灵, 刘 宁
(中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051)
摘 要: 针对非完整轮式机器人有限时间精准轨迹跟踪避障问题, 设计了一种基于全局快速终端滑模方法, 兼具无抖振、 收敛时间可调等优点的轨迹跟踪控制器。 首先, 在载体坐标系下建立轮式机器人运动学模型; 其次, 构造包含终端吸引子和指数收敛项的全局快速终端滑模轨迹跟踪控制器, 通过Lyapunov稳定性理论证明了所设计的控制器能确保轨迹与航向角跟踪误差均能在有限时间内收敛于较小的零域范围内; 最后, 引入人工势场避障方法, 实现了机器人严格跟踪参考轨迹的同时绕开障碍物。 实验结果表明, 该方法能实现在避障的同时对于给定参考轨迹的有限时间稳定跟踪控制。
关键词: 轨迹跟踪; 全局快速终端滑模; 收敛时间可调; 无抖振; 人工势场法
引用格式: CAO Zhi-bin, YANG Wei, SHAO Xing-ling, et al. Trajectory tracking and obstacle avoidance method for robots based on fast terminal sliding mode. Journal of Measurement Science and Instrumentation, 2020, 11(1): 78-86. [doi: 10.3969/j.issn.1674-8042.2020.01.010]
[full text view]