此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Energy management and coordination control of microgrid in elevated station of urban rail transit

LU Tao-tao1,2, TIAN Ming-xing1,2, ZHANG Ning3, GAO Feng-yang1,2


1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China;3. CSCEC AECOM Consultants Co., Ltd, Lanzhou 730000, China)

 

Abstract:The rapid development of urban rail transit brings convenience to the public, but its huge energy consumption problem cannot be ignored. A microgrid composed of photovoltaic power generation unit, regenerative braking energy feedback unit and battery energy storage unit is proposed, which provides green power for the station. In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy, the energy management mode of microgrid is designed according to the illumination situation, braking energy feedback situation, battery state of charge and so on. In addition, a coordination control method based on virtual synchronous generator (VSG) is proposed to realize smooth switching among modes. Finally, the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink. The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.


Key words:urban rail transit; elevated station; saving energy and reducing consumption; microgrid; virtual synchronous generator (VSG); regenerative braking; energy feedback

 

CLD number:TM734     Document code:A


Article ID:1674-8042(2019)04-0398-07     doi:10.3969/j.issn.1674-8042.2019.04.012

 

References


1]Zhou C. Solar photovoltaic power generation system design for elevated subway station. Urban Rapid Rail Transit, 2014, 27(6): 104-108.

2]China Urban Rail Transit Association. 2017 annual statistics and analysis reports. [2018-06-12].  http:∥www.camet.org.cn/index.php?m=content&c=index&a=show&catid=18&id=13532, 2018-04-19.

3]Hu H T, Zheng Z, He Z Y, et al. The framework and key technologies of traffic energy internet. Proceedings of the CSEE, 2018, 39(1): 1-13.

4]Shen X J, Zhang Y, Chen S, et al. Investigation of grid-connected photovoltaic generation system applied for urban rail transit energy-savings. In: Proceedings of Industry Applications Society Annual Meeting, Las Vegas, NV, USA, 2012, 2(1): 1-4.

5]Ni W B, Shen X J, Zhao S M, et al. Grid modes of PV generation system in urban rail transit power supply. Urban Mass Transit, 2014, 17(11): 78-85.

6]Chen Y. Research on application of solar photovoltaic system in rail transit. Modern Urban Transit, 2010, (2): 59-61.

7]Wang L, Nie J F. Application of photovoltaic power generation in urban rail transit. Electric Railway, 2014(5): 44-46.

8]Zhou C. Application of solar photovoltaic power generation in urban rail transit. Urban Rapid Rail Transit, 2013, 26(2): 77-80.

9]Bu L F, Geng Y Y Solar photovoltaic power generation system of urban rail transit ground station roof. Science and Technology and Economy in Inner Mongolia, 2012, 23(2): 98-101.

10]Xu H D. Photovoltaic power generation technology in metro depot. Science & Technology Vision, 2016, (7): 17-19.

11]Ruan Q J. Research on application of photovoltaic power generation system in rail transit vehicle base. Electric Railway, 2016, (1): 42-44.

12]Zhang Z. Application of photovoltaic power generation system in Chongqing rail transit. Equipment Application and Research, 2015, (12): 47-49.

13]Hayashiya H, Yoshizumi H, Suzuki T, et al. Necessity and possibility of smart grid technology application on railway power supply system. Power Electronics and Applications. Birmingham, IEEE, 2011, 41(8): 1-10.

14]Nasr S. Smart DC grid integration in railway systems. Journées JCGE’2014-SEEDS, 2014.

15]Nasr S, Iordache M, Petit M. Smart micro-grid integration in DC railway systems. In: Proceedings of Innovative Smart Grid Technologies Conference Europe, Istanbul, Turkey, 2015: 1-6.

16]Nasr S, Petit M, Iordache M,, et al. Stability of DC micro-grid for urban railway systems. International Journal of Smart Grid and Clean Energy, 2015: 261-268.

17]Zheng T. Research on energy analysis and comprehensive energy saving of metro regenerative braking. Chengdu: South Jiaotong University, 2017.

18]Zhong Q C. Synchronverters: Inverters that mimic synchronous generators. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267.

19]Zhong Q C. Self-synchronized synchronverters: Inverter without a dedicated synchronization unit. IEEE Transactions on Power Electronics, 2014, 29(2): 617-630.

20]Zhang G J, Tang X S, Zhou L et al. Research on complementary PWM controlled buck/boost bi-directional converter in supercapacitor energy storage. Proceedings of the CSEE, 2011, 31(6): 15-21.

21]Wei X F, Lu Q, Hu L K, et al. Research on power feed-forward voltage control strategy based on hybrid energy storage. Journal of Guangxi University (Natural Science Editon), 2017, 42(6): 2050-2058.


 

城轨高架车站微电网能量管理与协调控制


路涛涛1,2, 田铭兴1,2, 张  宁3, 高锋阳1,2


1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070;2. 甘肃省轨道交通电气自动化工程实验室(兰州交通大学), 甘肃 兰州 730070;3. 中国市政工程西北设计研究院有限公司, 甘肃 兰州 730000)


  :  城市轨道交通快速发展为民众出行带来了便利, 但其巨大的能耗问题也不容忽视。 针对高架车站提出了一种由光伏发电单元、 制动能量回馈单元、 蓄电池储能单元等组成的微电网, 为车站提供绿色电力。 为平抑光伏发电的波动性和再生制动回馈能量的冲击性, 以蓄电池荷电状态为依据, 统筹光照情况、 再生制动能量回馈情况等设计了微电网的能量管理模式, 并给出了一种基于虚拟同步发电机的协调控制方法, 以实现模式间的平滑切换。 最后利用Matlab/Simulink对所提高架车站微电网能量管理和协调控制方法进行了验证。 结果表明, 采用所出的方法可使高架车站微电网在多种能量管理模式下实现安全可靠的运行, 而且模式切换平稳。

关键词:  城市轨道交通; 高架车站; 节能降耗; 微电网; 虚拟同步发动机; 再生制动; 能量回馈

 

引用格式:  LU Tao-tao, TIAN Ming-xing, ZHANG Ning, et al. Energy management and coordination control of microgrid in elevated station of urban rail transit. Journal of Measurement Science and Instrumentation, 2019, 10(4): 398-404. [doi: 10.3969/j.issn.1674-8042.2019.04.012]


[full text view]